Showing information for HMDB0000510 ('α-aminoadipic acid', '2-aminoadipate', '2-aminoadipic acid')


Metabolite information

HMDB ID HMDB0000510
Synonyms
(+/-)-2-aminoadipate
(+/-)-2-aminoadipic acid
2 Aminoadipic acid
2 Aminohexanedioic acid
2-Aminoadipate
2-Aminoadipic acid
Aad
Acid, 2 aminoadipic
Acid, 2-aminoadipic
Acid, 2-aminohexanedioic
Acid, alpha-aminoadipic
Aminoadipate
Aminoadipic acid, 2
DL-2-Aminoadipate
DL-2-Aminoadipic acid
DL-2-Aminohexanedioate
DL-2-Aminohexanedioic acid
DL-a-Aminoadipate
DL-a-Aminoadipic acid
DL-alpha-Aminoadipate
DL-alpha-Aminoadipic acid
DL-α-aminoadipate
DL-α-aminoadipic acid
L-2-Aminoadipate
L-2-Aminoadipic acid
L-2-Aminohexanedioate
L-2-Aminohexanedioic acid
L-alpha-Aminoadipate
L-alpha-Aminoadipic acid
a-Aminoadipate
a-Aminoadipic acid
alpha Aminoadipic acid
alpha-Aminoadipate
alpha-Aminoadipic acid
alpha-amino-Adipic acid
α-aminoadipate
α-aminoadipic acid
Chemical formula C6H11NO4
IUPAC name
2-aminohexanedioic acid
CAS registry number 542-32-5
Monoisotopic molecular weight 161.068807845

Chemical taxonomy

Super class Organic acids and derivatives
Class Carboxylic acids and derivatives
Sub class Amino acids, peptides, and analogues

Biological properties

Pathways (Pathway Details in HMDB)

The paper(s) that report HMDB0000510 as a lung cancer biomarker

The studies that identify HMDB0000510 as a lung cancer-related metabolite


Reference Country Specimen Marker function Participants (Case) Participants (Control)
Cancer type Stage Number Gender (M,F) Age mean (range) (M/F) Smoking status Type Number Gender (M,F) Age mean (range) (M/F) Smoking status
Miyamoto et al. 2015 US blood diagnosis adenocarcinoma unknown (mostly late stage) 18 10, 8 67 (50-85) / 62 (53-72) former, current healthy 20 8, 12 64 (49-80) / 66 (58-82) former, current
Miyamoto et al. 2015 US blood diagnosis NSCLC, SCLC, mesothelioma, secondary metastasis to lung I, II, III, IV 11 4, 7 67 (61-73) / 67 (47-76) smoker, non-smoker healthy 11 5, 6 69 (61-83) / 54 (44-61) unknown
Klupczynska et al. 2016a Poland serum diagnosis adenocarcinoma, squamous cell carcinoma I, II, III 90 58, 32 64 (48-86) current, non-smoker, unknown healthy 63 41, 22 62 (43-78) smoker, non-smoker, unknown
Fahrmann et al. 2015 US serum diagnosis adenocarcinoma I, II, III, IV 49 17, 32 65.9 ± 9.87 healthy 31 11, 20 64.1 ± 8.97
Fahrmann et al. 2015 US plasma diagnosis adenocarcinoma I, II, III, IV 52 17, 35 65.9 ± 9.66 healthy 31 11, 20 64.1 ± 8.97
Hori et al. 2011 Japan tissue diagnosis adenocarcinoma, squamous cell carcinoma, SCLC 7 6, 1 median: 61 (53-82) smoker, non-smoker tumor vs. adjacent normal tissue 7 6, 1 median: 61 (53-82) smoker, non-smoker
Wikoff et al. 2015b US tissue diagnosis adenocarcinoma I 39 15, 24 72.33 ± 8.78 smoker, non-smoker tumor vs. adjacent normal tissue 39 15, 24 72.33 ± 8.78 smoker, non-smoker
Fahrmann et al. 2015 US serum diagnosis adenocarcinoma I, II, III, IV 43 21, 22 67.3 ± 10.10 healthy 43 21, 22 65.9 ± 8.05
Fahrmann et al. 2015 US plasma diagnosis adenocarcinoma I, II, III, IV 43 21, 22 67.3 ± 10.10 healthy 43 21, 22 65.9 ± 8.05
Moreno et al. 2018 Spain tissue therapy, diagnosis squamous cell carcinoma I, II, III 35 35, 0 68.71 ± 7.46 tumor vs. adjacent normal tissue 35 35, 0 68.71 ± 7.46
Moreno et al. 2018 Spain tissue therapy, diagnosis adenocarcinoma I, II, III 33 24, 9 62.11 ± 9.73 tumor vs. adjacent normal tissue 33 24, 9 62.11 ± 9.73
Reference Chromatography Ion source Positive/Negative mode Mass analyzer Identification level
Miyamoto et al. 2015 GC EI TOF MS/MS
Miyamoto et al. 2015 GC EI TOF MS/MS
Klupczynska et al. 2016a LC QTRAP MS/MS
Fahrmann et al. 2015 GC EI TOF
Fahrmann et al. 2015 GC EI TOF
Hori et al. 2011 GC
Wikoff et al. 2015b GC EI TOF
Fahrmann et al. 2015 GC EI TOF
Fahrmann et al. 2015 GC EI TOF
Moreno et al. 2018 LC, GC ESI, EI both LC: linear ion-trap, GC: single-quadrupole LC: MS/MS
Moreno et al. 2018 LC, GC ESI, EI both LC: linear ion-trap, GC: single-quadrupole LC: MS/MS
Reference Data processing software Database search
Miyamoto et al. 2015 ChromaTOF software (Leco) UC Davis Metabolomics BinBase database
Miyamoto et al. 2015 ChromaTOF software (Leco) UC Davis Metabolomics BinBase database
Klupczynska et al. 2016a
Fahrmann et al. 2015 UC Davis Metabolomics BinBase database
Fahrmann et al. 2015 UC Davis Metabolomics BinBase database
Hori et al. 2011 Shimadzu GCMSsolution software commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08)
Wikoff et al. 2015b BinBase NIST11, BinBase
Fahrmann et al. 2015 UC Davis Metabolomics BinBase database
Fahrmann et al. 2015 UC Davis Metabolomics BinBase database
Moreno et al. 2018 KEGG, HMDB
Moreno et al. 2018 KEGG, HMDB
Reference Difference method Mean concentration (case) Mean concentration (control) Fold change (case/control) P-value FDR VIP
Miyamoto et al. 2015 Analysis of Covariance 378.388888888889 429 0.88 0.08
Miyamoto et al. 2015 Analysis of Covariance 407.090909090909 403 1.01 0.50
Klupczynska et al. 2016a t-test, Welch’s t-test or the Mann-Whitney U test, one-way ANOVA 0.86±0.48 ?M 0.88±0.33 ?M 0.98 0.26
Fahrmann et al. 2015 regress (by the covariates: age, gender and smoking history [packs per year]), permutation test 92 ± 52 98 ± 50 0.94 0.76 0.90
Fahrmann et al. 2015 regress (by the covariates: age, gender and smoking history [packs per year]), permutation test 94 ± 40 83 ± 32 1.14 0.30 0.69
Hori et al. 2011 student’s t-test, PLS-DA 2.36 1.00e-02
Wikoff et al. 2015b OPLS-DA 1.10 0.77
Fahrmann et al. 2015 regress (by the covariates: age, gender and smoking history [packs per year]), permutation test
Fahrmann et al. 2015 regress (by the covariates: age, gender and smoking history [packs per year]), permutation test
Moreno et al. 2018 paired two-sample t-test, PLS-DA 1.99 9.92e-08 3.06e-07
Moreno et al. 2018 paired two-sample t-test, PLS-DA 1.64 9.14e-04 2.35e-03
Reference Classification method Cutoff value AUROC 95%CI Sensitivity (%) Specificity (%) Accuracy (%)
Miyamoto et al. 2015
Miyamoto et al. 2015
Klupczynska et al. 2016a ROC curve analysis (Monte-Carlo cross validation), discriminant function analysis 0.554
Fahrmann et al. 2015 random forest
Fahrmann et al. 2015 random forest
Hori et al. 2011
Wikoff et al. 2015b
Fahrmann et al. 2015 random forest
Fahrmann et al. 2015 random forest
Moreno et al. 2018
Moreno et al. 2018