Showing information for HMDB0000840 ('2-hydroxyhippuric acid', '2-hydroxyhippurate')


Metabolite information

HMDB ID HMDB0000840
Synonyms
((2-Hydroxybenzoyl)amino)acetic acid
(2-Hydroxybenzoyl)glycine
2-Hydroxybenzoylaminoacetate
2-Hydroxybenzoylaminoacetic acid
2-Hydroxybenzoylglycine
2-Hydroxyhippurate
2-Hydroxyhippuric acid
N-(2-Hydroxybenzoyl)-glycine
N-(2-Hydroxybenzoyl)glycine
N-(O-Hydroxybenzoyl)glycine
N-O-Hydroxybenzoylglycine
N-Salicyloylglycine
O-Hydroxy-hippurate
O-Hydroxy-hippuric acid
O-Hydroxyhippate
O-Hydroxyhippic acid
O-Hydroxyhippurate
O-Hydroxyhippuric acid
Salicylate
Salicylglycine
Salicylic acid
Salicyloylglycine
Salicylurate
Salicylurate, monosodium salt
[(2-Hydroxybenzoyl)amino]acetate
[(2-Hydroxybenzoyl)amino]acetic acid
ortho-Hydroxyhippurate
ortho-Hydroxyhippuric acid
Chemical formula C9H9NO4
IUPAC name
2-[(2-hydroxyphenyl)formamido]acetic acid
CAS registry number 487-54-7
Monoisotopic molecular weight 195.053157781

Chemical taxonomy

Super class Benzenoids
Class Benzene and substituted derivatives
Sub class Benzoic acids and derivatives

Biological properties

Pathways (Pathway Details in HMDB)

The paper(s) that report HMDB0000840 as a lung cancer biomarker

The studies that identify HMDB0000840 as a lung cancer-related metabolite


Reference Country Specimen Marker function Participants (Case) Participants (Control)
Cancer type Stage Number Gender (M,F) Age mean (range) (M/F) Smoking status Type Number Gender (M,F) Age mean (range) (M/F) Smoking status
Mazzone et al. 2016 US serum adenocarcinoma, squamous cell carcinoma I, II, III 94 55.3%, 44.7% 68.7 at-risk controls 190 50.5%, 49.5% 66.2
Fahrmann et al. 2015 US serum diagnosis adenocarcinoma I, II, III, IV 49 17, 32 65.9 ± 9.87 healthy 31 11, 20 64.1 ± 8.97
Fahrmann et al. 2015 US plasma diagnosis adenocarcinoma I, II, III, IV 52 17, 35 65.9 ± 9.66 healthy 31 11, 20 64.1 ± 8.97
Fahrmann et al. 2015 US plasma diagnosis adenocarcinoma I, II, III, IV 43 21, 22 67.3 ± 10.10 healthy 43 21, 22 65.9 ± 8.05
Fahrmann et al. 2015 US serum diagnosis adenocarcinoma I, II, III, IV 43 21, 22 67.3 ± 10.10 healthy 43 21, 22 65.9 ± 8.05
Sun et al. 2019 China serum diagnosis lung cancer I, II, III, IV 31 21, 10 54.1 ± 9.9 smoker, non-smoker healthy 29 15, 14 52.1 ± 14.6 smoker, non-smoker
Reference Chromatography Ion source Positive/Negative mode Mass analyzer Identification level
Mazzone et al. 2016 LC ESI negative linear ion-trap MS/MS
Fahrmann et al. 2015 GC EI TOF
Fahrmann et al. 2015 GC EI TOF
Fahrmann et al. 2015 GC EI TOF
Fahrmann et al. 2015 GC EI TOF
Sun et al. 2019 GC
Reference Data processing software Database search
Mazzone et al. 2016 Metabolon LIMS system Metabolon LIMS system
Fahrmann et al. 2015 UC Davis Metabolomics BinBase database
Fahrmann et al. 2015 UC Davis Metabolomics BinBase database
Fahrmann et al. 2015 UC Davis Metabolomics BinBase database
Fahrmann et al. 2015 UC Davis Metabolomics BinBase database
Sun et al. 2019 BinBase, KEGG
Reference Difference method Mean concentration (case) Mean concentration (control) Fold change (case/control) P-value FDR VIP
Mazzone et al. 2016 two- sample independent t test 0.5152872± 1.692007 2.7504126± 8.607883 0.19 0.01 0.04
Fahrmann et al. 2015 regress (by the covariates: age, gender and smoking history [packs per year]), permutation test 311 ± 1067 78 ± 40 4.01 0.06 0.33
Fahrmann et al. 2015 regress (by the covariates: age, gender and smoking history [packs per year]), permutation test 446 ± 1914 68 ± 45 6.54 5.00e-03 0.09
Fahrmann et al. 2015 regress (by the covariates: age, gender and smoking history [packs per year]), permutation test 51 ± 34 76 ± 87 0.67 0.03 0.14
Fahrmann et al. 2015 regress (by the covariates: age, gender and smoking history [packs per year]), permutation test 79 ± 26 127 ± 151 0.62 0.04 0.24
Sun et al. 2019 Student t test, PLS-DA 3.83 3.07e-08 7.42e-07 0.86
Reference Classification method Cutoff value AUROC 95%CI Sensitivity (%) Specificity (%) Accuracy (%)
Mazzone et al. 2016
Fahrmann et al. 2015 random forest
Fahrmann et al. 2015 random forest
Fahrmann et al. 2015 random forest
Fahrmann et al. 2015 random forest
Sun et al. 2019 ROC curve analysis