Showing information for HMDB0000112 ('γ-aminobutyric acid', 'gamma-aminobutyrate', 'GABA', '4-aminobutyric acid')


Metabolite information

HMDB ID HMDB0000112
Synonyms
3-Carboxypropylamine
4 Aminobutanoic acid
4 Aminobutyric acid
4-Aminobutanoate
4-Aminobutanoic acid
4-Aminobutyrate
4-Aminobutyric acid
4Abu
Acid, hydrochloride gamma-aminobutyric
Aminalon
Aminalone
GABA
GABA, lithium
GAMMA-amino-BUTANOIC ACID
Gaballon
Gamarex
Gammalon
Gammalone
Gammar
Gammasol
Hydrochloride gamma-aminobutyric acid
Lithium gaba
Mielogen
Mielomade
Omega-aminobutyrate
Omega-aminobutyric acid
Piperidate
Piperidic acid
Piperidinate
Piperidinic acid
W-Aminobutyrate
W-Aminobutyric acid
g-Aminobutanoate
g-Aminobutanoic acid
g-Aminobuttersaeure
g-Aminobutyrate
g-Aminobutyric acid
g-amino-BUTANOate
g-amino-BUTANOic acid
g-amino-N-Butyrate
g-amino-N-Butyric acid
gamma Aminobutyrate
gamma Aminobutyric acid
gamma Aminobutyric acid, hydrochloride
gamma Aminobutyric acid, monolithium salt
gamma Aminobutyric acid, monosodium salt
gamma-Aminobutanoate
gamma-Aminobutanoic acid
gamma-Aminobuttersaeure
gamma-Aminobutyrate
gamma-Aminobutyric acid, calcium salt (2:1)
gamma-Aminobutyric acid, hydrochloride
gamma-Aminobutyric acid, monolithium salt
gamma-Aminobutyric acid, monosodium salt
gamma-Aminobutyric acid, zinc salt (2:1)
gamma-amino-BUTANOate
gamma-amino-N-Butyrate
gamma-amino-N-Butyric acid
γ-amino-N-butyrate
γ-amino-N-butyric acid
γ-amino-butanoate
γ-amino-butanoic acid
γ-aminobutanoate
γ-aminobutanoic acid
γ-aminobuttersaeure
γ-aminobutyrate
γ-aminobutyric acid
Chemical formula C4H9NO2
IUPAC name
4-aminobutanoic acid
CAS registry number 56-12-2
Monoisotopic molecular weight 103.063328537

Chemical taxonomy

Super class Organic acids and derivatives
Class Carboxylic acids and derivatives
Sub class Amino acids, peptides, and analogues

Biological properties

Pathways (Pathway Details in HMDB)

The paper(s) that report HMDB0000112 as a lung cancer biomarker

The studies that identify HMDB0000112 as a lung cancer-related metabolite


Reference Country Specimen Marker function Participants (Case) Participants (Control)
Cancer type Stage Number Gender (M,F) Age mean (range) (M/F) Smoking status Type Number Gender (M,F) Age mean (range) (M/F) Smoking status
Ro?-Mazurczyk et al. 2017 Poland serum diagnosis adenocarcinoma, squamous cell carcinoma I, II, III 31 17, 14 52-72 healthy 92 52, 40 52-73
Chen et al. 2018 China serum diagnosis NSCLC I, II 90 40, 50 58.1 ± 9.0 healthy 90 42, 48 53.0 ± 11.8
Moreno et al. 2018 Spain tissue therapy, diagnosis squamous cell carcinoma I, II, III 35 35, 0 68.71 ± 7.46 tumor vs. adjacent normal tissue 35 35, 0 68.71 ± 7.46
Moreno et al. 2018 Spain tissue therapy, diagnosis adenocarcinoma I, II, III 33 24, 9 62.11 ± 9.73 tumor vs. adjacent normal tissue 33 24, 9 62.11 ± 9.73
Jiang et al. 2021 China Saliva diagnosis lung cancer I 45 16, 29 Median: 57.8 smoker, non-smoker healthy 25 10, 15 Median: 52.9 smoker, non-smoker
Reference Chromatography Ion source Positive/Negative mode Mass analyzer Identification level
Ro?-Mazurczyk et al. 2017 GC TOF In-source fragmentation
Chen et al. 2018 GC EI TOF
Moreno et al. 2018 LC, GC ESI, EI both LC: linear ion-trap, GC: single-quadrupole LC: MS/MS
Moreno et al. 2018 LC, GC ESI, EI both LC: linear ion-trap, GC: single-quadrupole LC: MS/MS
Jiang et al. 2021 MALDI Negative TOF/TOF MS/MS
Reference Data processing software Database search
Ro?-Mazurczyk et al. 2017 Leco ChromaTOF-GC Replib, Mainlib and Fiehn libraries
Chen et al. 2018 Chroma TOF LECO-Fiehn Rtx 5
Moreno et al. 2018 KEGG, HMDB
Moreno et al. 2018 KEGG, HMDB
Jiang et al. 2021 FlexAnalysis, ClinproTools software, R script HMDB
Reference Difference method Mean concentration (case) Mean concentration (control) Fold change (case/control) P-value FDR VIP
Ro?-Mazurczyk et al. 2017 two-sample T test, U Mann-Whitney test, Benjamini-Hochberg approach 19.623 ± 9.3508 23.651 ± 11.954 0.83 0.13 0.45
Chen et al. 2018 PCA, OPLS-DA 0.67 1.24
Moreno et al. 2018 paired two-sample t-test, PLS-DA 1.57 2.37e-05 4.82e-05
Moreno et al. 2018 paired two-sample t-test, PLS-DA 1.35 6.75e-03 0.01
Jiang et al. 2021 Student’s t-test, PCA, Cluster analysis by Matlab. OPLS-DA 1.27e-04 3.90e-04 1.04
Reference Classification method Cutoff value AUROC 95%CI Sensitivity (%) Specificity (%) Accuracy (%)
Ro?-Mazurczyk et al. 2017 ROC curve
Chen et al. 2018 ROC curve
Moreno et al. 2018
Moreno et al. 2018
Jiang et al. 2021 ROC analysis 0.986 (Combination) 97.2 (Combination) 92% (Combination)