Showing information for HMDB0002802 ('cortisone')


Metabolite information

HMDB ID HMDB0002802
Synonyms
11-dehydro-17-Hydroxycorticosterone
17-Hydroxy-11-dehydrocorticosterone
17a,21-Dihydroxy-4-pregnene-3,11,20-trione
17alpha,21-Dihydroxy-4-pregnene-3,11,20-trione
17α,21-dihydroxy-4-pregnene-3,11,20-trione
4-Pregnene-17a,21-diol-3,11,20-trione
4-Pregnene-17alpha,21-diol-3,11,20-trione
4-Pregnene-17α,21-diol-3,11,20-trione
Adreson
Andreson
Anusol HC
Balneol-HC
Colocort
Compound e
Corlin
Cortadren
Cortandren
Cortef
Cortef acetate
Cortisal
Cortisate
Cortison
Cortisone acetate
Cortistal
Cortivite
Cortogen
Cortone
Cortril
Delta(4)-Pregnene-17alpha,21-diol-3,11,20-trione
Dermacort
Dricort
Flexicort
Florinef
Fludrocortisone acetate
Glycort
Hemsol-HC
Hi-cor
Incortin
Kendall'S compound
Kendall's compound e
Kortison
Locoid
Locoid lipocream
Micort-HC
Nogenic HC
Orabase hca
Pandel
Pregn-4-en-17a,21-diol-3,11,20-trione
Pregn-4-en-17alpha,21-diol-3,11,20-trione
Pregn-4-en-17α,21-diol-3,11,20-trione
Prestwick_132
Reichstein fa
Reichstein's substance fa
Scheroson
Solu-cortef
Stie-cort
Texacort
Westcort
Wintersteiner's compound F
beta-HC
delta(4)-Pregnene-17a,21-diol-3,11,20-trione
δ(4)-pregnene-17a,21-diol-3,11,20-trione
δ(4)-pregnene-17α,21-diol-3,11,20-trione
Chemical formula C21H28O5
IUPAC name
(1S,2R,10S,11S,14R,15S)-14-hydroxy-14-(2-hydroxyacetyl)-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-ene-5,17-dione
CAS registry number 53-06-5
Monoisotopic molecular weight 360.193674006

Chemical taxonomy

Super class Lipids and lipid-like molecules
Class Steroids and steroid derivatives
Sub class Hydroxysteroids

Biological properties

Pathways (Pathway Details in HMDB)

The paper(s) that report HMDB0002802 as a lung cancer biomarker

The studies that identify HMDB0002802 as a lung cancer-related metabolite


Reference Country Specimen Marker function Participants (Case) Participants (Control)
Cancer type Stage Number Gender (M,F) Age mean (range) (M/F) Smoking status Type Number Gender (M,F) Age mean (range) (M/F) Smoking status
Mazzone et al. 2016 US serum adenocarcinoma, squamous cell carcinoma I, II, III 94 55.3%, 44.7% 68.7 at-risk controls 190 50.5%, 49.5% 66.2
Xiang et al. 2018 China plasma diagnosis squamous cell carcinoma I, II, III, IV 25 21, 4 59.8 (43-83) former, current, non-smoker healthy 56 35, 21 58 (47-80) former, current, non-smoker
Xiang et al. 2018 China plasma diagnosis squamous cell carcinoma I, II, III, IV 22 16, 6 60.5 (42-73) former, current, non-smoker healthy 56 35, 21 59 (42-79) former, current, non-smoker
Xiang et al. 2018 China plasma diagnosis adenocarcinoma I, II, III, IV 24 10, 14 59 (43-71) former, current, non-smoker healthy 56 35, 21 59 (42-79) former, current, non-smoker
Xiang et al. 2018 China plasma diagnosis adenocarcinoma I, II, III, IV 28 16, 12 59 (44-80) former, current, non-smoker healthy 56 35, 21 58 (47-80) former, current, non-smoker
Reference Chromatography Ion source Positive/Negative mode Mass analyzer Identification level
Mazzone et al. 2016 LC ESI positive linear ion-trap MS/MS
Xiang et al. 2018 LC ESI both LTQ-FT
Xiang et al. 2018 LC ESI both LTQ-FT
Xiang et al. 2018 LC ESI both LTQ-FT
Xiang et al. 2018 LC ESI both LTQ-FT
Reference Data processing software Database search
Mazzone et al. 2016 Metabolon LIMS system Metabolon LIMS system
Xiang et al. 2018 Analyst software
Xiang et al. 2018 Analyst software
Xiang et al. 2018 Analyst software
Xiang et al. 2018 Analyst software
Reference Difference method Mean concentration (case) Mean concentration (control) Fold change (case/control) P-value FDR VIP
Mazzone et al. 2016 two- sample independent t test 1.042866± 0.3049293 0.9794105± 0.2590661 1.06 0.07 0.14
Xiang et al. 2018 independent sample t-tests, OPLS-DA 16.72 1.12e-23 2.32
Xiang et al. 2018 independent sample t-tests, OPLS-DA 11.26 4.30e-22 2.23
Xiang et al. 2018 independent sample t-tests, OPLS-DA 8.68 4.12e-20 2.55
Xiang et al. 2018 independent sample t-tests, OPLS-DA 4.13 1.49e-17 2.15
Reference Classification method Cutoff value AUROC 95%CI Sensitivity (%) Specificity (%) Accuracy (%)
Mazzone et al. 2016
Xiang et al. 2018
Xiang et al. 2018
Xiang et al. 2018
Xiang et al. 2018