Metabolite information |
|
HMDB ID | HMDB0000134 |
Synonyms |
(2E)-2-Butenedioate(2E)-2-Butenedioic acid(2E)-But-2-enedioate(2E)-But-2-enedioic acid(e)-2-Butenedioate(e)-2-Butenedioic acid2-(e)-Butenedioate2-(e)-Butenedioic acidAllomaleateAllomaleic acidAmmonium fumarateBoletateBoletic acidFC 33FumarateFumarsaeureFuramagLichenateLichenic acidMagnesium fumarateSodium fumaratee297trans-1,2-Ethylenedicarboxylatetrans-1,2-Ethylenedicarboxylic acidtrans-2-Butenedioatetrans-2-Butenedioic acidtrans-But-2-enedioatetrans-But-2-enedioic acidtrans-Butenedioatetrans-Butenedioic acid |
Chemical formula | C4H4O4 |
IUPAC name | (2E)-but-2-enedioic acid |
CAS registry number | 110-17-8 |
Monoisotopic molecular weight | 116.010958616 |
Chemical taxonomy |
|
Super class | Organic acids and derivatives |
Class | Carboxylic acids and derivatives |
Sub class | Dicarboxylic acids and derivatives |
Biological properties |
|
Pathways (Pathway Details in HMDB) |
|
Reference | Country | Specimen | Marker function | Participants (Case) | Participants (Control) | |||||||||
Cancer type | Stage | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | Type | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | ||||
Miyamoto et al. 2015 | US | blood | diagnosis | NSCLC, SCLC, mesothelioma, secondary metastasis to lung | I, II, III, IV | 11 | 4, 7 | 67 (61-73) / 67 (47-76) | smoker, non-smoker | healthy | 11 | 5, 6 | 69 (61-83) / 54 (44-61) | unknown |
Miyamoto et al. 2015 | US | blood | diagnosis | adenocarcinoma | unknown (mostly late stage) | 18 | 10, 8 | 67 (50-85) / 62 (53-72) | former, current | healthy | 20 | 8, 12 | 64 (49-80) / 66 (58-82) | former, current |
Ro?-Mazurczyk et al. 2017 | Poland | serum | diagnosis | adenocarcinoma, squamous cell carcinoma | I, II, III | 31 | 17, 14 | 52-72 | – | healthy | 92 | 52, 40 | 52-73 | – |
Mazzone et al. 2016 | US | serum | – | adenocarcinoma, squamous cell carcinoma | I, II, III | 94 | 55.3%, 44.7% | 68.7 | – | at-risk controls | 190 | 50.5%, 49.5% | 66.2 | – |
Klupczynska et al. 2016b | Poland | serum | diagnosis | adenocarcinoma, squamous cell carcinoma | I, II, III | 90 | 58, 32 | 64 ± 6.9 | smoker, non-smoker, unknown | healthy | 62 | 40, 22 | 62 ± 8.8 | smoker, non-smoker, unknown |
Fahrmann et al. 2015 | US | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Fahrmann et al. 2015 | US | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 52 | 17, 35 | 65.9 ± 9.66 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Fahrmann et al. 2015 | US | serum | diagnosis | adenocarcinoma | I, II, III, IV | 49 | 17, 32 | 65.9 ± 9.87 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Fahrmann et al. 2015 | US | serum | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Hori et al. 2011 | Japan | tissue | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | – | 7 | 6, 1 | median: 61 (53-82) | smoker, non-smoker | tumor vs. adjacent normal tissue | 7 | 6, 1 | median: 61 (53-82) | smoker, non-smoker |
Hori et al. 2011 | Japan | serum | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | III, IV | 22 | – | – | – | healthy | 29 | 23, 6 | median: 64 (34-78) | smoker, non-smoker, unknown |
Hori et al. 2011 | Japan | serum | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | I, II, III, IV | 33 | 26, 7 | median: 65 (55-81) | smoker, non-smoker, unknown | healthy | 29 | 23, 6 | median: 64 (34-78) | smoker, non-smoker, unknown |
Hori et al. 2011 | Japan | serum | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | I, II | 11 | – | – | – | healthy | 29 | 23, 6 | median: 64 (34-78) | smoker, non-smoker, unknown |
Wikoff et al. 2015b | US | tissue | diagnosis | adenocarcinoma | I | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker | tumor vs. adjacent normal tissue | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker |
Moreno et al. 2018 | Spain | tissue | therapy, diagnosis | squamous cell carcinoma | I, II, III | 35 | 35, 0 | 68.71 ± 7.46 | – | tumor vs. adjacent normal tissue | 35 | 35, 0 | 68.71 ± 7.46 | – |
Moreno et al. 2018 | Spain | tissue | therapy, diagnosis | adenocarcinoma | I, II, III | 33 | 24, 9 | 62.11 ± 9.73 | – | tumor vs. adjacent normal tissue | 33 | 24, 9 | 62.11 ± 9.73 | – |
Mu et al. 2019 | China | serum | diagnosis | NSCLC | I, II, III, IV | 30 | 0, 30 | 60.4 ± 9.7 | non-smoker | healthy | 30 | 0, 30 | 54.7 ± 14.3 | non-smoker |
Ahmed et al. 2021 | Canada | Urine | diagnosis | NSCLC pre-surgery | I, II | 29 | 11,18 | 63.8 ± 7.0 | former, current, non-smoker | NSCLC post-surgery | 29 | 11,18 | 63.8 ± 7.0 | former, current, non-smoker |
Reference | Chromatography | Ion source | Positive/Negative mode | Mass analyzer | Identification level |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Ro?-Mazurczyk et al. 2017 | GC | – | – | TOF | In-source fragmentation |
Mazzone et al. 2016 | GC | EI | – | quadrupole | MS/MS |
Klupczynska et al. 2016b | LC | ESI | negative | triple quadrupole | MS/MS |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Hori et al. 2011 | GC | – | – | – | – |
Hori et al. 2011 | GC | – | – | – | – |
Hori et al. 2011 | GC | – | – | – | – |
Hori et al. 2011 | GC | – | – | – | – |
Wikoff et al. 2015b | GC | EI | – | TOF | – |
Moreno et al. 2018 | LC, GC | ESI, EI | both | LC: linear ion-trap, GC: single-quadrupole | LC: MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | both | LC: linear ion-trap, GC: single-quadrupole | LC: MS/MS |
Mu et al. 2019 | GC | – | – | – | – |
Ahmed et al. 2021 | LC | ESI | both | Q-TOF | – |
Reference | Data processing software | Database search |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Ro?-Mazurczyk et al. 2017 | Leco ChromaTOF-GC | Replib, Mainlib and Fiehn libraries |
Mazzone et al. 2016 | Metabolon LIMS system | Metabolon LIMS system |
Klupczynska et al. 2016b | Analyst software | – |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Wikoff et al. 2015b | BinBase | NIST11, BinBase |
Moreno et al. 2018 | – | KEGG, HMDB |
Moreno et al. 2018 | – | KEGG, HMDB |
Mu et al. 2019 | – | – |
Ahmed et al. 2021 | MassHunter, Mass Profiler Professional | HMDB, METLIN |
Reference | Difference method | Mean concentration (case) | Mean concentration (control) | Fold change (case/control) | P-value | FDR | VIP |
Miyamoto et al. 2015 | Analysis of Covariance | 1203.72727272727 | 1162.36363636364 | 1.04 | 0.68 | – | – |
Miyamoto et al. 2015 | Analysis of Covariance | 1230.55555555556 | 1140.45 | 1.08 | 0.33 | – | – |
Ro?-Mazurczyk et al. 2017 | two-sample T test, U Mann-Whitney test, Benjamini-Hochberg approach | 0.30476 ± 0.18536 | 0.3389 ± 0.2455 | 0.90 | 0.16 | 0.47 | – |
Mazzone et al. 2016 | two- sample independent t test | 1.042788± 0.480176 | 1.037012± 0.2996676 | 1.01 | 0.90 | 0.79 | – |
Klupczynska et al. 2016b | Mann-Whitney U test | 1.29 ± 1.15 μmol/l | 1.5 ± 1.22 μmol/l | 0.86 | 3.00e-04 | – | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 181 ± 62 | 156 ± 53 | 1.17 | 0.07 | 0.23 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 260 ± 103 | 259 ± 123 | 1.00 | 1.00 | 1.00 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 316 ± 117 | 328 ± 126 | 0.96 | 0.51 | 0.74 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 333 ± 100 | 284 ± 73 | 1.17 | 0.02 | 0.15 | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 1.86 | 2.00e-03 | – | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 1.84 | 1.00e-04 | – | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 1.76 | 1.00e-04 | – | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 1.61 | 1.00e-04 | – | – |
Wikoff et al. 2015b | OPLS-DA | – | – | 1.00 | – | 0.84 | – |
Moreno et al. 2018 | paired two-sample t-test, PLS-DA | – | – | 1.49 | 9.26e-07 | 2.42e-06 | – |
Moreno et al. 2018 | paired two-sample t-test, PLS-DA | – | – | 1.09 | 0.24 | 0.31 | – |
Mu et al. 2019 | PCA, PLS-DA, Mann-Whitney U test | – | – | 1.15 | 0.02 | 0.04 | 1.38 |
Ahmed et al. 2021 | Pair t-test | – | – | 17.00 | 0.01 | – | – |
Reference | Classification method | Cutoff value | AUROC 95%CI | Sensitivity (%) | Specificity (%) | Accuracy (%) |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Ro?-Mazurczyk et al. 2017 | ROC curve | – | – | – | – | – |
Mazzone et al. 2016 | – | – | – | – | – | – |
Klupczynska et al. 2016b | ROC curve analysis | – | 0.673 | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Wikoff et al. 2015b | – | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Mu et al. 2019 | – | – | – | – | – | – |
Ahmed et al. 2021 | – | – | – | – | – | – |