Metabolite information |
|
HMDB ID | HMDB0000847 |
Synonyms |
1-Nonanoate1-Nonanoic acid1-Octanecarboxylate1-Octanecarboxylic acidCH3-[CH2]7-COOHCirrasol 185aEmery 1202Emery'S L-114Emfac 1202Hexacid C-9N-NonanoateN-Nonanoic acidN-NonoateN-Nonoic acidN-NonylateN-Nonylic acidN-PelargonateN-Pelargonic acidNonanoateNonanoic acidNonansaeureNonoateNonoic acidNonylateNonylic acidPelargatePelargic acidPelargonPelargonatePelargonic acid, aluminum saltPelargonic acid, cadmium saltPelargonic acid, calcium saltPelargonic acid, potassium saltPelargonic acid, sodium saltPelargonic acid, zinc saltPelargonsaeurePergonatePergonic acidPotassium nonanoate |
Chemical formula | C9H18O2 |
IUPAC name | nonanoic acid |
CAS registry number | 112-05-0 |
Monoisotopic molecular weight | 158.13067982 |
Chemical taxonomy |
|
Super class | Lipids and lipid-like molecules |
Class | Fatty Acyls |
Sub class | Fatty acids and conjugates |
Biological properties |
|
Pathways (Pathway Details in HMDB) |
|
Reference | Country | Specimen | Marker function | Participants (Case) | Participants (Control) | |||||||||
Cancer type | Stage | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | Type | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | ||||
Miyamoto et al. 2015 | US | blood | diagnosis | NSCLC, SCLC, mesothelioma, secondary metastasis to lung | I, II, III, IV | 11 | 4, 7 | 67 (61-73) / 67 (47-76) | smoker, non-smoker | healthy | 11 | 5, 6 | 69 (61-83) / 54 (44-61) | unknown |
Miyamoto et al. 2015 | US | blood | diagnosis | adenocarcinoma | unknown (mostly late stage) | 18 | 10, 8 | 67 (50-85) / 62 (53-72) | former, current | healthy | 20 | 8, 12 | 64 (49-80) / 66 (58-82) | former, current |
Mazzone et al. 2016 | US | serum | – | adenocarcinoma, squamous cell carcinoma | I, II, III | 94 | 55.3%, 44.7% | 68.7 | – | at-risk controls | 190 | 50.5%, 49.5% | 66.2 | – |
Fahrmann et al. 2015 | US | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Fahrmann et al. 2015 | US | serum | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Fahrmann et al. 2015 | US | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 52 | 17, 35 | 65.9 ± 9.66 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Fahrmann et al. 2015 | US | serum | diagnosis | adenocarcinoma | I, II, III, IV | 49 | 17, 32 | 65.9 ± 9.87 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Wikoff et al. 2015b | US | tissue | diagnosis | adenocarcinoma | I | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker | tumor vs. adjacent normal tissue | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker |
Moreno et al. 2018 | Spain | tissue | therapy, diagnosis | adenocarcinoma | I, II, III | 33 | 24, 9 | 62.11 ± 9.73 | – | tumor vs. adjacent normal tissue | 33 | 24, 9 | 62.11 ± 9.73 | – |
Qi et al. 2021 | China | blood | diagnosis | adenocarcinoma, squamous cell carcinoma, small cell lung cancer, other types, unknown types | I, II, III, IV | 98 | 51, 47 | Median: 50 (32-69) | – | healthy | 75 | 36, 39 | Median: 50 (31-69) | – |
Qi et al. 2021 | China | blood | diagnosis | adenocarcinoma, squamous cell carcinoma, small cell lung cancer, other types, unknown types | I, II, III, IV | 98 | 51, 47 | Median: 50 (32-69) | – | healthy | 75 | 36, 39 | Median: 50 (31-69) | – |
Zheng et al. 2021 | China | Serum | diagnosis | lung cancer | I, II, III, IV | 57 | 38, 19 | Median: 62 (52-69) | smoker, non-smoker | healthy | 59 | 48, 11 | Median: 60 (59-62) | smoker, non-smoker |
Reference | Chromatography | Ion source | Positive/Negative mode | Mass analyzer | Identification level |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Mazzone et al. 2016 | LC | ESI | negative | linear ion-trap | MS/MS |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Wikoff et al. 2015b | GC | EI | – | TOF | – |
Moreno et al. 2018 | LC, GC | ESI, EI | both | LC: linear ion-trap, GC: single-quadrupole | LC: MS/MS |
Qi et al. 2021 | LC | ESI | both | Q-Orbitrap | MS/MS |
Qi et al. 2021 | LC | ESI | both | Q-Orbitrap | MS/MS |
Zheng et al. 2021 | GC | EI | – | quadrupole | – |
Reference | Data processing software | Database search |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Mazzone et al. 2016 | Metabolon LIMS system | Metabolon LIMS system |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Wikoff et al. 2015b | BinBase | NIST11, BinBase |
Moreno et al. 2018 | – | KEGG, HMDB |
Qi et al. 2021 | ProteoWizard, XCMS, Xcalibur, CAMERA | mzCloud, ChemSpider, LipidBlast and Fiehn HILIC |
Qi et al. 2021 | ProteoWizard, XCMS, Xcalibur, CAMERA | mzCloud, ChemSpider, LipidBlast and Fiehn HILIC |
Zheng et al. 2021 | MassHunter Workstation software, Mass Profiler Professional software | NIST14, HMDB, Golm Metabolome Database |
Reference | Difference method | Mean concentration (case) | Mean concentration (control) | Fold change (case/control) | P-value | FDR | VIP |
Miyamoto et al. 2015 | Analysis of Covariance | 33678.6363636364 | 35053.3636363636 | 0.96 | 0.82 | – | – |
Miyamoto et al. 2015 | Analysis of Covariance | 34173.3888888889 | 34539.35 | 0.99 | 0.95 | – | – |
Mazzone et al. 2016 | two- sample independent t test | 0.9449255± 0.1431241 | 1.0330258± 0.1629988 | 0.91 | 1.20e-05 | 0.02 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 2202 ± 441 | 2271 ± 360 | 0.97 | 0.30 | 0.58 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 4021 ± 852 | 4085 ± 1024 | 0.98 | 0.86 | 0.95 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 5862 ± 2565 | 6482 ± 2041 | 0.90 | 0.08 | 0.47 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 7180 ± 2842 | 7793 ± 2601 | 0.92 | 0.21 | 0.54 | – |
Wikoff et al. 2015b | OPLS-DA | – | – | 1.20 | – | 0.03 | – |
Moreno et al. 2018 | paired two-sample t-test, PLS-DA | – | – | 0.78 | 4.53e-06 | 2.58e-05 | – |
Qi et al. 2021 | PCA, OPLS-DA, Student’s t test | – | – | 0.84 | 3.58e-04 | – | 1.18 |
Qi et al. 2021 | PCA, OPLS-DA, Student’s t test | – | – | 0.81 | 4.09e-04 | – | 2.90 |
Zheng et al. 2021 | Student’s t-test, Mann–Whitney U test, PCA, PLS-DA, and OPLS-DA | – | – | 0.90 | 1.89e-12 | 2.62e-12 | 1.11 |
Reference | Classification method | Cutoff value | AUROC 95%CI | Sensitivity (%) | Specificity (%) | Accuracy (%) |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Mazzone et al. 2016 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Wikoff et al. 2015b | – | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Qi et al. 2021 | – | – | – | – | – | – |
Qi et al. 2021 | – | – | – | – | – | – |
Zheng et al. 2021 | – | – | – | – | – | – |