Showing information for HMDB0013128 ('valerylcarnitine', 'C5-carnitine')


Metabolite information

HMDB ID HMDB0013128
Synonyms
C5-Carnitine
O-Valeroyl-L-carnitine
Pentanoyl-L-carnitine
Pentanoylcarnitine
Valeryl-L-carnitine
Chemical formula C12H24NO4
IUPAC name
[(2R)-3-carboxy-2-(pentanoyloxy)propyl]trimethylazanium
CAS registry number 40225-14-7
Monoisotopic molecular weight 246.169984677

Chemical taxonomy

Super class Lipids and lipid-like molecules
Class Fatty Acyls
Sub class Fatty acid esters

Biological properties

Pathways (Pathway Details in HMDB)

The paper(s) that report HMDB0013128 as a lung cancer biomarker

The studies that identify HMDB0013128 as a lung cancer-related metabolite


Reference Country Specimen Marker function Participants (Case) Participants (Control)
Cancer type Stage Number Gender (M,F) Age mean (range) (M/F) Smoking status Type Number Gender (M,F) Age mean (range) (M/F) Smoking status
Ni et al. 2019 China serum diagnosis NSCLC, SCLC II, III, IV 17 13, 4 66.3 (53-77) former, current, non-smoker healthy 30 23, 7 62.8 (34-85) former, current, non-smoker
Ni et al. 2019 China serum diagnosis lung cancer 40 26, 14 66.7 (49-83) healthy 100 65, 35 64.1 (41-90)
Ni et al. 2016 China serum diagnosis lung cancer 40 14, 26 67 healthy 100
Mazzone et al. 2016 US serum adenocarcinoma, squamous cell carcinoma I, II, III 94 55.3%, 44.7% 68.7 at-risk controls 190 50.5%, 49.5% 66.2
Klupczynska et al. 2017 Poland serum diagnosis adenocarcinoma, squamous cell carcinoma I, II 50 28, 22 65 (53-86) healthy 25 14, 11 64 (50-78)
Moreno et al. 2018 Spain tissue therapy, diagnosis squamous cell carcinoma I, II, III 35 35, 0 68.71 ± 7.46 tumor vs. adjacent normal tissue 35 35, 0 68.71 ± 7.46
Moreno et al. 2018 Spain tissue therapy, diagnosis adenocarcinoma I, II, III 33 24, 9 62.11 ± 9.73 tumor vs. adjacent normal tissue 33 24, 9 62.11 ± 9.73
Kowalczyk et al. 2021 Poland Tissue diagnosis adenocarcinoma (ADC) I, II, III 33 23, 10 64.77 ± 8.44 healthy control 20 13, 7 61.5 ± 12.06
Reference Chromatography Ion source Positive/Negative mode Mass analyzer Identification level
Ni et al. 2019 LC ESI positive triple quadrupole MS/MS
Ni et al. 2019 LC ESI positive triple quadrupole MS/MS
Ni et al. 2016 LC ESI positive Triple quadrupole MS/MS
Mazzone et al. 2016 LC ESI positive linear ion-trap MS/MS
Klupczynska et al. 2017 LC ESI positive Q-Orbitrap MS/MS
Moreno et al. 2018 LC, GC ESI, EI both LC: linear ion-trap, GC: single-quadrupole LC: MS/MS
Moreno et al. 2018 LC, GC ESI, EI both LC: linear ion-trap, GC: single-quadrupole LC: MS/MS
Kowalczyk et al. 2021 LC ESI both Q-TOF
Reference Data processing software Database search
Ni et al. 2019 HMDB, KEGG, SMPDB
Ni et al. 2019 HMDB, KEGG, SMPDB
Ni et al. 2016
Mazzone et al. 2016 Metabolon LIMS system Metabolon LIMS system
Klupczynska et al. 2017 MZmine 2.19 software In-house library
Moreno et al. 2018 KEGG, HMDB
Moreno et al. 2018 KEGG, HMDB
Kowalczyk et al. 2021 Mass Hunter Qualitative Analysis Software, Mass Profiler Professional METLIN, KEGG, LIPIDMAPS, and HMDB
Reference Difference method Mean concentration (case) Mean concentration (control) Fold change (case/control) P-value FDR VIP
Ni et al. 2019 Mann-Whitney U test, Student's t-test, Welch's F test 0.09 0.12 0.75 0.02
Ni et al. 2019 Mann-Whitney U test, Student's t-test, Welch's F test 0.18 0.09 2.00 1.00e-03
Ni et al. 2016 one-way ANOVA 0.18 ± 0.09 μmol/L 0.10 ± 0.04 μmol/L 1.00e-04
Mazzone et al. 2016 two- sample independent t test 0.7506213± 0.4477842 0.6762532± 0.4242761 1.11 0.17 0.28
Klupczynska et al. 2017 t-test 0.66 5.00e-05 1.03e-03
Moreno et al. 2018 paired two-sample t-test, PLS-DA 1.85 7.62e-06 1.68e-05
Moreno et al. 2018 paired two-sample t-test, PLS-DA 1.70 3.53e-05 1.42e-04
Kowalczyk et al. 2021 Mann–Whitney U-test and Benjamini–Hochberg false discovery rate, partial least squares discriminant analysis (PLS-DA) 0.02
Reference Classification method Cutoff value AUROC 95%CI Sensitivity (%) Specificity (%) Accuracy (%)
Ni et al. 2019 ROC analysis 0.285
Ni et al. 2019 ROC analysis 0.818
Ni et al. 2016
Mazzone et al. 2016
Klupczynska et al. 2017 ROC curve analysis (Monte-Carlo cross validation) 0.754 (0.616–0.865) 0.71 0.68
Moreno et al. 2018
Moreno et al. 2018
Kowalczyk et al. 2021