Metabolite information |
|
HMDB ID | HMDB0000574 |
Synonyms |
(+)-2-amino-3-Mercaptopropionic acid(2R)-2-amino-3-Mercaptopropanoate(2R)-2-amino-3-Mercaptopropanoic acid(2R)-2-amino-3-Sulfanylpropanoate(2R)-2-amino-3-Sulfanylpropanoic acid(2R)-2-amino-3-Sulphanylpropanoate(2R)-2-amino-3-Sulphanylpropanoic acid(R)-(+)-Cysteine(R)-2-amino-3-Mercaptopropanoate(R)-2-amino-3-Mercaptopropanoic acid(R)-2-amino-3-mercapto-Propanoate(R)-2-amino-3-mercapto-Propanoic acid(R)-Cysteine2-amino-3-Mercaptopropanoate2-amino-3-Mercaptopropanoic acid2-amino-3-Mercaptopropionate2-amino-3-Mercaptopropionic acid3-mercapto-L-AlanineAcetylcysteineCCYSTEINECarbocysteineCisteinaCisteinumCysCysteinCysteine hydrochlorideCysteinumFREE cysteineHalf cystineHalf-cystineL CysteineL-(+)-CysteineL-2-amino-3-MercaptopropanoateL-2-amino-3-Mercaptopropanoic acidL-2-amino-3-MercaptopropionateL-2-amino-3-Mercaptopropionic acidL-CysteinL-ZysteinPolycysteineThioserineZinc cysteinatealpha-amino-beta-Thiolpropionic acidb-Mercaptoalaninebeta-Mercaptoalaninee 920e-920e920 |
Chemical formula | C3H7NO2S |
IUPAC name | (2R)-2-amino-3-sulfanylpropanoic acid |
CAS registry number | 52-90-4 |
Monoisotopic molecular weight | 121.019749163 |
Chemical taxonomy |
|
Super class | Organic acids and derivatives |
Class | Carboxylic acids and derivatives |
Sub class | Amino acids, peptides, and analogues |
Biological properties |
|
Pathways (Pathway Details in HMDB) |
|
Reference | Country | Specimen | Marker function | Participants (Case) | Participants (Control) | |||||||||
Cancer type | Stage | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | Type | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | ||||
Miyamoto et al. 2015 | US | blood | diagnosis | adenocarcinoma | unknown (mostly late stage) | 18 | 10, 8 | 67 (50-85) / 62 (53-72) | former, current | healthy | 20 | 8, 12 | 64 (49-80) / 66 (58-82) | former, current |
Miyamoto et al. 2015 | US | blood | diagnosis | NSCLC, SCLC, mesothelioma, secondary metastasis to lung | I, II, III, IV | 11 | 4, 7 | 67 (61-73) / 67 (47-76) | smoker, non-smoker | healthy | 11 | 5, 6 | 69 (61-83) / 54 (44-61) | unknown |
Ro?-Mazurczyk et al. 2017 | Poland | serum | diagnosis | adenocarcinoma, squamous cell carcinoma | I, II, III | 31 | 17, 14 | 52-72 | – | healthy | 92 | 52, 40 | 52-73 | – |
Mazzone et al. 2016 | US | serum | – | adenocarcinoma, squamous cell carcinoma | I, II, III | 94 | 55.3%, 44.7% | 68.7 | – | at-risk controls | 190 | 50.5%, 49.5% | 66.2 | – |
Fahrmann et al. 2015 | US | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 52 | 17, 35 | 65.9 ± 9.66 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Fahrmann et al. 2015 | US | serum | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Fahrmann et al. 2015 | US | serum | diagnosis | adenocarcinoma | I, II, III, IV | 49 | 17, 32 | 65.9 ± 9.87 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Fahrmann et al. 2015 | US | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Hori et al. 2011 | Japan | tissue | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | – | 7 | 6, 1 | median: 61 (53-82) | smoker, non-smoker | tumor vs. adjacent normal tissue | 7 | 6, 1 | median: 61 (53-82) | smoker, non-smoker |
Wikoff et al. 2015b | US | tissue | diagnosis | adenocarcinoma | I | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker | tumor vs. adjacent normal tissue | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker |
Moreno et al. 2018 | Spain | tissue | therapy, diagnosis | squamous cell carcinoma | I, II, III | 35 | 35, 0 | 68.71 ± 7.46 | – | tumor vs. adjacent normal tissue | 35 | 35, 0 | 68.71 ± 7.46 | – |
Moreno et al. 2018 | Spain | tissue | therapy, diagnosis | adenocarcinoma | I, II, III | 33 | 24, 9 | 62.11 ± 9.73 | – | tumor vs. adjacent normal tissue | 33 | 24, 9 | 62.11 ± 9.73 | – |
Callejon-Leblic et al. 2019 | Spain | serum | diagnosis | NSCLC, SCLC | – | 32 | 22, 8 | 66 ± 12 | former, current, non-smoker | healthy | 29 | 18, 11 | 56 ± 13 | former, non-smoker |
Callejon-Leblic et al. 2019 | Spain | serum | diagnosis | NSCLC, SCLC | – | 32 | 22, 8 | 66 ± 12 | former, current, non-smoker | healthy | 29 | 18, 11 | 56 ± 13 | former, non-smoker |
Mu et al. 2019 | China | serum | diagnosis | NSCLC | I, II, III, IV | 30 | 0, 30 | 60.4 ± 9.7 | non-smoker | healthy | 30 | 0, 30 | 54.7 ± 14.3 | non-smoker |
Reference | Chromatography | Ion source | Positive/Negative mode | Mass analyzer | Identification level |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Ro?-Mazurczyk et al. 2017 | GC | – | – | TOF | In-source fragmentation |
Mazzone et al. 2016 | GC | EI | – | quadrupole | MS/MS |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Hori et al. 2011 | GC | – | – | – | – |
Wikoff et al. 2015b | GC | EI | – | TOF | – |
Moreno et al. 2018 | LC, GC | ESI, EI | both | LC: linear ion-trap, GC: single-quadrupole | LC: MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | both | LC: linear ion-trap, GC: single-quadrupole | LC: MS/MS |
Callejon-Leblic et al. 2019 | GC | EI | – | ion trap | – |
Callejon-Leblic et al. 2019 | GC | EI | – | ion trap | – |
Mu et al. 2019 | GC | – | – | – | – |
Reference | Data processing software | Database search |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Ro?-Mazurczyk et al. 2017 | Leco ChromaTOF-GC | Replib, Mainlib and Fiehn libraries |
Mazzone et al. 2016 | Metabolon LIMS system | Metabolon LIMS system |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Wikoff et al. 2015b | BinBase | NIST11, BinBase |
Moreno et al. 2018 | – | KEGG, HMDB |
Moreno et al. 2018 | – | KEGG, HMDB |
Callejon-Leblic et al. 2019 | XCMS | NIST Mass Spectral Library |
Callejon-Leblic et al. 2019 | XCMS | NIST Mass Spectral Library |
Mu et al. 2019 | – | – |
Reference | Difference method | Mean concentration (case) | Mean concentration (control) | Fold change (case/control) | P-value | FDR | VIP |
Miyamoto et al. 2015 | Analysis of Covariance | 7816.22222222222 | 9046.7 | 0.86 | 0.25 | – | – |
Miyamoto et al. 2015 | Analysis of Covariance | 8400.90909090909 | 8526.72727272727 | 0.99 | 0.55 | – | – |
Ro?-Mazurczyk et al. 2017 | two-sample T test, U Mann-Whitney test, Benjamini-Hochberg approach | 0.54811 ± 0.28307 | 0.77687 ± 0.89885 | 0.71 | 0.31 | 0.65 | – |
Mazzone et al. 2016 | two- sample independent t test | 0.8982138± 0.2592517 | 1.0673047± 0.2545761 | 0.84 | 3.16e-07 | 0.02 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 1230 ± 597 | 1507 ± 1050 | 0.82 | 0.56 | 0.83 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 1378 ± 604 | 1406 ± 533 | 0.98 | 0.66 | 0.89 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 1659 ± 783 | 1843 ± 970 | 0.90 | 0.45 | 0.72 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 714 ± 337 | 790 ± 398 | 0.90 | 0.36 | 0.63 | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 3.26 | 0.02 | – | – |
Wikoff et al. 2015b | OPLS-DA | – | – | 1.60 | – | 3.00e-03 | – |
Moreno et al. 2018 | paired two-sample t-test, PLS-DA | – | – | 3.37 | 5.89e-10 | 2.95e-09 | – |
Moreno et al. 2018 | paired two-sample t-test, PLS-DA | – | – | 2.01 | 1.12e-06 | 8.31e-06 | – |
Callejon-Leblic et al. 2019 | PLS-LDA, one-way ANOVA | – | – | 1.90 | 0.04 | – | 1.28 |
Callejon-Leblic et al. 2019 | PLS-LDA, one-way ANOVA | – | – | 0.91 | 9.00e-03 | – | 1.48 |
Mu et al. 2019 | PCA, PLS-DA, Mann-Whitney U test | – | – | 0.65 | 1.00e-03 | 1.00e-03 | 1.90 |
Reference | Classification method | Cutoff value | AUROC 95%CI | Sensitivity (%) | Specificity (%) | Accuracy (%) |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Ro?-Mazurczyk et al. 2017 | ROC curve | – | – | – | – | – |
Mazzone et al. 2016 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Wikoff et al. 2015b | – | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Callejon-Leblic et al. 2019 | ROC curve analysis | – | 0.64 | – | – | – |
Callejon-Leblic et al. 2019 | ROC curve analysis | – | 0.54 | – | – | – |
Mu et al. 2019 | – | – | – | – | – | – |