Showing information for HMDB0000062 ('carnitine', 'L-carnitine')


Metabolite information

HMDB ID HMDB0000062
Synonyms
(-)-(R)-3-Hydroxy-4-(trimethylammonio)butyrate
(-)-Carnitine
(-)-L-Carnitine
(R)-(3-Carboxy-2-hydroxypropyl)trimethylammonium hydroxide
(R)-Carnitine
(S)-Carnitine
1-Carnitine
3-Carboxy-2-hydroxy-N,N,N-trimethyl-1-propanaminium
3-Carboxy-2-hydroxy-N,N,N-trimethyl-1-propanaminium hydroxide, inner salt
3-Hydroxy-4-trimethylammoniobutanoate
3-Hydroxy-4-trimethylammoniobutanoic acid
Bicarnesine
Carnicor
Carniking
Carniking 50
Carnilean
Carnipass
Carnipass 20
Carnitene
Carnitine
Carnitor
D-Carnitine
DL-Carnitine
Karnitin
L Carnitine
L-(-)-Carnitine
L-gamma-Trimethyl-beta-hydroxybutyrobetaine
Levocarnitina
Levocarnitine
Levocarnitinum
R-(-)-3-Hydroxy-4-trimethylaminobutyrate
Vitamin BT
delta-Carnitine
gamma-Trimethyl-ammonium-beta-hydroxybutirate
gamma-Trimethyl-beta-hydroxybutyrobetaine
gamma-Trimethyl-hydroxybutyrobetaine
Chemical formula C7H15NO3
IUPAC name
(3R)-3-hydroxy-4-(trimethylazaniumyl)butanoate
CAS registry number 541-15-1
Monoisotopic molecular weight 161.105193351

Chemical taxonomy

Super class Organic nitrogen compounds
Class Organonitrogen compounds
Sub class Quaternary ammonium salts

Biological properties

Pathways (Pathway Details in HMDB)

The paper(s) that report HMDB0000062 as a lung cancer biomarker

The studies that identify HMDB0000062 as a lung cancer-related metabolite


Reference Country Specimen Marker function Participants (Case) Participants (Control)
Cancer type Stage Number Gender (M,F) Age mean (range) (M/F) Smoking status Type Number Gender (M,F) Age mean (range) (M/F) Smoking status
Mazzone et al. 2016 US serum adenocarcinoma, squamous cell carcinoma I, II, III 94 55.3%, 44.7% 68.7 at-risk controls 190 50.5%, 49.5% 66.2
Yang et al. 2010 China urine diagnosis adenocarcinoma, squamous cell carcinoma 35 23, 12 61.8 ± 13.3, 57.4 ± 9.8 healthy 32 27, 5 57.1 ± 9.9 / 45.6 ± 10.8
Wu et al. 2014 China urine diagnosis NSCLC 20 10, 10 38-74 healthy 20 10, 10 35-66
Chen et al. 2015b China serum lung cancer 30 61.58 ± 10.67 healthy 30 60.35 ± 12.48
Chen et al. 2015b China serum lung cancer 30 61.58 ± 10.67 before vs. after treatment (operation) 30 61.58 ± 10.67
Chen et al. 2015b China serum lung cancer (postoperative) 30 61.58 ± 10.67 healthy 30 60.35 ± 12.48
Li et al. 2015 China tissue diagnosis adenocarcinoma, squamous cell carcinoma 52 tumor vs. adjacent normal tissue 21
Callejon-Leblic et al. 2016 Spain bronchoalveolar lavage fluid diagnosis lung cancer 24 16, 8 66 ± 11 noncancerous lung diseases 31 23, 8 56 ± 13
Klupczynska et al. 2017 Poland serum diagnosis adenocarcinoma, squamous cell carcinoma I, II 50 28, 22 65 (53-86) healthy 25 14, 11 64 (50-78)
Moreno et al. 2018 Spain tissue therapy, diagnosis adenocarcinoma I, II, III 33 24, 9 62.11 ± 9.73 tumor vs. adjacent normal tissue 33 24, 9 62.11 ± 9.73
Moreno et al. 2018 Spain tissue therapy, diagnosis squamous cell carcinoma I, II, III 35 35, 0 68.71 ± 7.46 tumor vs. adjacent normal tissue 35 35, 0 68.71 ± 7.46
Callej?n-Leblic et al. 2019 Spain blood diagnosis NSCLC, SCLC II, III, IV 30 25, 5 67 ± 12 former, current, non-smoker healthy 30 14, 16 56 ± 14 former, non-smoker
Ahmed et al. 2021 Canada Serum diagnosis NSCLC pre-surgery I, II 32 12,20 63.8 ± 7.0 former, current, non-smoker NSCLC post-surgery 32 12,20 63.8 ± 7.0 former, current, non-smoker
Qi et al. 2021 China blood diagnosis adenocarcinoma, squamous cell carcinoma, small cell lung cancer, other types, unknown types I, II, III, IV 98 51, 47 Median: 50 (32-69) healthy 75 36, 39 Median: 50 (31-69)
Kowalczyk et al. 2021 Poland Tissue diagnosis squemous cell carcinoma (SCC) I, II, III 54 39, 15 64.45 ± 8.02 healthy control 20 13, 7 61.5 ± 12.06
Kowalczyk et al. 2021 Poland Tissue diagnosis squemous cell carcinoma (SCC) I, II, III 54 39, 15 64.45 ± 8.02 adenocarcinoma (ADC) 33 23, 10 64.77 ± 8.44
Reference Chromatography Ion source Positive/Negative mode Mass analyzer Identification level
Mazzone et al. 2016 LC ESI positive linear ion-trap MS/MS
Yang et al. 2010 LC ESI positive QTRAP MS/MS
Wu et al. 2014 LC ESI positive Q-TOF MS/MS
Chen et al. 2015b LC ESI positive Q-TOF
Chen et al. 2015b LC ESI positive Q-TOF
Chen et al. 2015b LC ESI positive Q-TOF
Li et al. 2015 LC AFADESI both Q-Orbitrap, Q-TOF MS/MS
Callejon-Leblic et al. 2016 DI ESI positive Q-TOF MS/MS
Klupczynska et al. 2017 LC ESI positive Q-Orbitrap MS/MS
Moreno et al. 2018 LC, GC ESI, EI both LC: linear ion-trap, GC: single-quadrupole LC: MS/MS
Moreno et al. 2018 LC, GC ESI, EI both LC: linear ion-trap, GC: single-quadrupole LC: MS/MS
Callej?n-Leblic et al. 2019 DI ESI positive Q-TOF MS/MS
Ahmed et al. 2021 LC ESI both Q-TOF
Qi et al. 2021 LC ESI both Q-Orbitrap MS/MS
Kowalczyk et al. 2021 LC ESI both Q-TOF
Kowalczyk et al. 2021 LC ESI both Q-TOF
Reference Data processing software Database search
Mazzone et al. 2016 Metabolon LIMS system Metabolon LIMS system
Yang et al. 2010 MarkerView HMDB, KEGG, Pubchem, mass bank
Wu et al. 2014 MassLynx HMDB, metlin, lipidmaps
Chen et al. 2015b Mass Hunter Qualitative Analysis Software (Agilent Technologies) METLIN
Chen et al. 2015b Mass Hunter Qualitative Analysis Software (Agilent Technologies) METLIN
Chen et al. 2015b Mass Hunter Qualitative Analysis Software (Agilent Technologies) METLIN
Li et al. 2015 Markerview (AB SCIEX) LIPID MAPS, Massbank, HMDB, METLIN
Callejon-Leblic et al. 2016 Markerview HMDB, METLIN
Klupczynska et al. 2017 MZmine 2.19 software In-house library
Moreno et al. 2018 KEGG, HMDB
Moreno et al. 2018 KEGG, HMDB
Callej?n-Leblic et al. 2019 HMDB, Metlin
Ahmed et al. 2021 MassHunter, Mass Profiler Professional HMDB, METLIN
Qi et al. 2021 ProteoWizard, XCMS, Xcalibur, CAMERA mzCloud, ChemSpider, LipidBlast and Fiehn HILIC
Kowalczyk et al. 2021 Mass Hunter Qualitative Analysis Software, Mass Profiler Professional METLIN, KEGG, LIPIDMAPS, and HMDB
Kowalczyk et al. 2021 Mass Hunter Qualitative Analysis Software, Mass Profiler Professional METLIN, KEGG, LIPIDMAPS, and HMDB
Reference Difference method Mean concentration (case) Mean concentration (control) Fold change (case/control) P-value FDR VIP
Mazzone et al. 2016 two- sample independent t test 0.995517± 0.2106721 1.023201± 0.1734553 0.97 0.24 0.35
Yang et al. 2010 OSC PLS-DA 3.70 1.79
Wu et al. 2014 OPLS-DA, student’s t-test 2.83 0.01 2.82
Chen et al. 2015b PCA, PLS-DA, independent t test 1.70 1.00e-03 1.57
Chen et al. 2015b PCA, PLS-DA, independent t test 1.39 1.00e-03 1.39
Chen et al. 2015b PCA, PLS-DA, independent t test 1.22 1.00e-03 1.17
Li et al. 2015 t-test, PLS-DA, OPLS-DA 3.72
Callejon-Leblic et al. 2016 PLS-LDA, one-way ANOVA 0.92 0.02 2.67
Klupczynska et al. 2017 t-test 1.12 2.49e-03 0.02
Moreno et al. 2018 paired two-sample t-test, PLS-DA 0.83 0.01 0.03
Moreno et al. 2018 paired two-sample t-test, PLS-DA 0.76 1.28e-05 2.71e-05
Callej?n-Leblic et al. 2019 PCA, PLS-DA, one-way ANOVA 1.44 2.00e-04 2.11
Ahmed et al. 2021 Pair t-test 3.00 <0.0001
Qi et al. 2021 PCA, OPLS-DA, Student’s t test 1.17 2.17e-06 8.75
Kowalczyk et al. 2021 Mann–Whitney U-test and Benjamini–Hochberg false discovery rate, partial least squares discriminant analysis (PLS-DA) 0.02
Kowalczyk et al. 2021 Mann–Whitney U-test and Benjamini–Hochberg false discovery rate, partial least squares discriminant analysis (PLS-DA) 0.02
Reference Classification method Cutoff value AUROC 95%CI Sensitivity (%) Specificity (%) Accuracy (%)
Mazzone et al. 2016
Yang et al. 2010
Wu et al. 2014 ROC curve analysis Carnitine+Acylcarnitine C3+Acylcarnitine C7:1+Acylcarnitine C8:2+Acylcarnitine C8:1+Acylcarnitine C8+Acylcarnitine C9:1+Acylcarnitine C10:3+Acylcarnitine C10:3+[Acylcarnitine C10:2+OH]+[Acylcarnitine C10:1+OH]+Acylcarnitine C12:4=0.958 (0.902-1.013) Taurine+Hippuric Acid+Tyrosine+Uric Acid+Carnitine+Acylcarnitine C3+Acylcarnitine C7:1+Acylcarnitine C8:2+Acylcarnitine C8:1+Acylcarnitine C8+Acylcarnitine C9:1+Acylcarnitine C10:3+Acylcarnitine C10:3+[Acylcarnitine C10:2+OH]+[Acylcarnitine C10:1+OH]+Acylcarnitine C12:4=1.000 (1.000-1.000)
Chen et al. 2015b
Chen et al. 2015b
Chen et al. 2015b
Li et al. 2015 ROC curve analysis
Callejon-Leblic et al. 2016 ROC curve analysis 0.87
Klupczynska et al. 2017 ROC curve analysis (Monte-Carlo cross validation) 0.656 (0.511–0.776) 0.52 0.76
Moreno et al. 2018
Moreno et al. 2018
Callej?n-Leblic et al. 2019 ROC curve 0.73
Ahmed et al. 2021
Qi et al. 2021
Kowalczyk et al. 2021
Kowalczyk et al. 2021