Metabolite information |
|
HMDB ID | HMDB0000064 |
Synonyms |
((amino(imino)Methyl)(methyl)amino)acetate((amino(imino)Methyl)(methyl)amino)acetic acid(N-methylcarbamimidamido)Acetate(N-methylcarbamimidamido)Acetic acid(a-methylguanido)Acetate(a-methylguanido)Acetic acid(alpha-methylguanido)Acetate(alpha-methylguanido)Acetic acid(α-methylguanido)acetate(α-methylguanido)acetic acidCosmocair C 100CreatinCreatine hydrateKreatinKrebiozonMethylglycocyamineMethylguanidoacetateMethylguanidoacetic acidN-(Aminoiminomethyl)-N-methyl-glycineN-(Aminoiminomethyl)-N-methylglycineN-AmidinosarcosineN-Carbamimidoyl-N-methylglycineN-Methyl-N-guanylglycineN-[(e)-amino(imino)METHYL]-N-methylglycinePhosphagen[[amino(imino)Methyl](methyl)amino]acetate[[amino(imino)Methyl](methyl)amino]acetic acida-methylguanidino Acetatea-methylguanidino Acetic acidalpha-methylguanidino Acetatealpha-methylguanidino Acetic acidα-methylguanidino acetateα-methylguanidino acetic acid |
Chemical formula | C4H9N3O2 |
IUPAC name | 2-(N-methylcarbamimidamido)acetic acid |
CAS registry number | 57-00-1 |
Monoisotopic molecular weight | 131.069476547 |
Chemical taxonomy |
|
Super class | Organic acids and derivatives |
Class | Carboxylic acids and derivatives |
Sub class | Amino acids, peptides, and analogues |
Biological properties |
|
Pathways (Pathway Details in HMDB) |
|
Reference | Country | Specimen | Marker function | Participants (Case) | Participants (Control) | |||||||||
Cancer type | Stage | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | Type | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | ||||
Mazzone et al. 2016 | US | serum | – | adenocarcinoma, squamous cell carcinoma | I, II, III | 94 | 55.3%, 44.7% | 68.7 | – | at-risk controls | 190 | 50.5%, 49.5% | 66.2 | – |
Callejon-Leblic et al. 2016 | Spain | bronchoalveolar lavage fluid | diagnosis | lung cancer | – | 24 | 16, 8 | 66 ± 11 | – | noncancerous lung diseases | 31 | 23, 8 | 56 ± 13 | – |
Moreno et al. 2018 | Spain | tissue | therapy, diagnosis | squamous cell carcinoma | I, II, III | 35 | 35, 0 | 68.71 ± 7.46 | – | tumor vs. adjacent normal tissue | 35 | 35, 0 | 68.71 ± 7.46 | – |
Moreno et al. 2018 | Spain | tissue | therapy, diagnosis | adenocarcinoma | I, II, III | 33 | 24, 9 | 62.11 ± 9.73 | – | tumor vs. adjacent normal tissue | 33 | 24, 9 | 62.11 ± 9.73 | – |
Callej?n-Leblic et al. 2019 | Spain | blood | diagnosis | NSCLC, SCLC | II, III, IV | 30 | 25, 5 | 67 ± 12 | former, current, non-smoker | healthy | 30 | 14, 16 | 56 ± 14 | former, non-smoker |
Qi et al. 2021 | China | blood | diagnosis | adenocarcinoma, squamous cell carcinoma, small cell lung cancer, other types, unknown types | I, II, III, IV | 98 | 51, 47 | Median: 50 (32-69) | – | healthy | 75 | 36, 39 | Median: 50 (31-69) | – |
You et al. 2020 | China | tissue | diagnosis | AC | I, II, III | 45xa0 | – | – | – | SCC | 18xa0 | – | – | – |
You et al. 2020 | China | Lung carcinoma tissue | diagnosis | NSCLC | I, II, III | 85 | 51, 34 | 59 ± 12 | – | benign lung tissues | 85 | 51, 34 | 59 ± 12 | – |
Kowalczyk et al. 2021 | Poland | Tissue | diagnosis | adenocarcinoma (ADC) | I, II, III | 33 | 23, 10 | 64.77 ± 8.44 | – | healthy control | 20 | 13, 7 | 61.5 ± 12.06 | – |
Kowalczyk et al. 2021 | Poland | Tissue | diagnosis | adenocarcinoma (ADC) | I, II, III | 33 | 23, 10 | 64.77 ± 8.44 | – | healthy control | 20 | 13, 7 | 61.5 ± 12.06 | – |
Kowalczyk et al. 2021 | Poland | Tissue | diagnosis | squemous cell carcinoma (SCC) | I, II, III | 54 | 39, 15 | 64.45 ± 8.02 | – | healthy control | 20 | 13, 7 | 61.5 ± 12.06 | – |
Kowalczyk et al. 2021 | Poland | Tissue | diagnosis | squemous cell carcinoma (SCC) | I, II, III | 54 | 39, 15 | 64.45 ± 8.02 | – | healthy control | 20 | 13, 7 | 61.5 ± 12.06 | – |
Kowalczyk et al. 2021 | Poland | Tissue | diagnosis | squemous cell carcinoma (SCC) | I, II, III | 54 | 39, 15 | 64.45 ± 8.02 | – | adenocarcinoma (ADC) | 33 | 23, 10 | 64.77 ± 8.44 | – |
Kowalczyk et al. 2021 | Poland | Tissue | diagnosis | squemous cell carcinoma (SCC) | I, II, III | 54 | 39, 15 | 64.45 ± 8.02 | – | adenocarcinoma (ADC) | 33 | 23, 10 | 64.77 ± 8.44 | – |
Reference | Chromatography | Ion source | Positive/Negative mode | Mass analyzer | Identification level |
Mazzone et al. 2016 | LC | ESI | positive | linear ion-trap | MS/MS |
Callejon-Leblic et al. 2016 | DI | ESI | positive | Q-TOF | MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | both | LC: linear ion-trap, GC: single-quadrupole | LC: MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | both | LC: linear ion-trap, GC: single-quadrupole | LC: MS/MS |
Callej?n-Leblic et al. 2019 | DI | ESI | positive | Q-TOF | MS/MS |
Qi et al. 2021 | LC | ESI | both | Q-Orbitrap | MS/MS |
You et al. 2020 | LC | ESI | both | Q-TOF | MS/MS |
You et al. 2020 | LC | ESI | both | Q-TOF | MS/MS |
Kowalczyk et al. 2021 | LC | ESI | both | Q-TOF | – |
Kowalczyk et al. 2021 | LC | ESI | both | Q-TOF | – |
Kowalczyk et al. 2021 | LC | ESI | both | Q-TOF | – |
Kowalczyk et al. 2021 | LC | ESI | both | Q-TOF | – |
Kowalczyk et al. 2021 | LC | ESI | both | Q-TOF | – |
Kowalczyk et al. 2021 | LC | ESI | both | Q-TOF | – |
Reference | Data processing software | Database search |
Mazzone et al. 2016 | Metabolon LIMS system | Metabolon LIMS system |
Callejon-Leblic et al. 2016 | Markerview | HMDB, METLIN |
Moreno et al. 2018 | – | KEGG, HMDB |
Moreno et al. 2018 | – | KEGG, HMDB |
Callej?n-Leblic et al. 2019 | – | HMDB, Metlin |
Qi et al. 2021 | ProteoWizard, XCMS, Xcalibur, CAMERA | mzCloud, ChemSpider, LipidBlast and Fiehn HILIC |
You et al. 2020 | MarkerView workstation, MultiQuant 3.0.3 | OSI-SMMS |
You et al. 2020 | MarkerView workstation, MultiQuant 3.0.3 | OSI-SMMS |
Kowalczyk et al. 2021 | Mass Hunter Qualitative Analysis Software, Mass Profiler Professional | METLIN, KEGG, LIPIDMAPS, and HMDB |
Kowalczyk et al. 2021 | Mass Hunter Qualitative Analysis Software, Mass Profiler Professional | METLIN, KEGG, LIPIDMAPS, and HMDB |
Kowalczyk et al. 2021 | Mass Hunter Qualitative Analysis Software, Mass Profiler Professional | METLIN, KEGG, LIPIDMAPS, and HMDB |
Kowalczyk et al. 2021 | Mass Hunter Qualitative Analysis Software, Mass Profiler Professional | METLIN, KEGG, LIPIDMAPS, and HMDB |
Kowalczyk et al. 2021 | Mass Hunter Qualitative Analysis Software, Mass Profiler Professional | METLIN, KEGG, LIPIDMAPS, and HMDB |
Kowalczyk et al. 2021 | Mass Hunter Qualitative Analysis Software, Mass Profiler Professional | METLIN, KEGG, LIPIDMAPS, and HMDB |
Reference | Difference method | Mean concentration (case) | Mean concentration (control) | Fold change (case/control) | P-value | FDR | VIP |
Mazzone et al. 2016 | two- sample independent t test | 1.174984± 0.8189461 | 1.251814± 0.8039395 | 0.94 | 0.45 | 0.54 | – |
Callejon-Leblic et al. 2016 | PLS-LDA, one-way ANOVA | – | – | 0.76 | 0.03 | – | 1.53 |
Moreno et al. 2018 | paired two-sample t-test, PLS-DA | – | – | 2.61 | 7.43e-14 | 1.38e-12 | – |
Moreno et al. 2018 | paired two-sample t-test, PLS-DA | – | – | 1.44 | 4.71e-05 | 1.82e-04 | – |
Callej?n-Leblic et al. 2019 | PCA, PLS-DA, one-way ANOVA | – | – | 1.33 | 1.20e-03 | – | 1.89 |
Qi et al. 2021 | PCA, OPLS-DA, Student’s t test | – | – | 1.20 | 0.05 | – | 1.58 |
You et al. 2020 | PCA, PLS-DA, non-parametric test | – | – | 0.34 | <0.001 | <0.001 | – |
You et al. 2020 | PCA, PLS-DA, non-parametric test | – | – | 0.60 | 0.03 | – | – |
Kowalczyk et al. 2021 | Mann–Whitney U-test and Benjamini–Hochberg false discovery rate, partial least squares discriminant analysis (PLS-DA) | – | – | – | 1.62e-04 | – | – |
Kowalczyk et al. 2021 | Mann–Whitney U-test and Benjamini–Hochberg false discovery rate, partial least squares discriminant analysis (PLS-DA) | – | – | – | 3.53e-03 | – | – |
Kowalczyk et al. 2021 | Mann–Whitney U-test and Benjamini–Hochberg false discovery rate, partial least squares discriminant analysis (PLS-DA) | – | – | – | 4.68e-04 | – | – |
Kowalczyk et al. 2021 | Mann–Whitney U-test and Benjamini–Hochberg false discovery rate, partial least squares discriminant analysis (PLS-DA) | – | – | – | 5.07e-06 | – | – |
Kowalczyk et al. 2021 | Mann–Whitney U-test and Benjamini–Hochberg false discovery rate, partial least squares discriminant analysis (PLS-DA) | – | – | – | 9.83e-03 | – | – |
Kowalczyk et al. 2021 | Mann–Whitney U-test and Benjamini–Hochberg false discovery rate, partial least squares discriminant analysis (PLS-DA) | – | – | – | 4.07e-03 | – | – |
Reference | Classification method | Cutoff value | AUROC 95%CI | Sensitivity (%) | Specificity (%) | Accuracy (%) |
Mazzone et al. 2016 | – | – | – | – | – | – |
Callejon-Leblic et al. 2016 | ROC curve analysis | – | 0.6 | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Callej?n-Leblic et al. 2019 | ROC curve | – | 0.7 | – | – | – |
Qi et al. 2021 | – | – | – | – | – | – |
You et al. 2020 | ROC analysis | – | 0.941 (Creatine + myoinositol + LPE 16:0 ) | 0.844 (Creatine + myoinositol + LPE 16:0 ) | 0.944 (Creatine + myoinositol + LPE 16:0 ) | – |
You et al. 2020 | – | – | – | – | – | – |
Kowalczyk et al. 2021 | – | – | – | – | – | – |
Kowalczyk et al. 2021 | – | – | – | – | – | – |
Kowalczyk et al. 2021 | – | – | – | – | – | – |
Kowalczyk et al. 2021 | – | – | – | – | – | – |
Kowalczyk et al. 2021 | – | – | – | – | – | – |
Kowalczyk et al. 2021 | – | – | – | – | – | – |