Metabolite information |
|
HMDB ID | HMDB0000625 |
Synonyms |
(2R,3S,4R,5R)-2,3,4,5,6-Pentahydroxyhexanoate(2R,3S,4R,5R)-2,3,4,5,6-Pentahydroxyhexanoic acid2,3,4,5,6-Pentahydroxy-hexanoate2,3,4,5,6-Pentahydroxy-hexanoic acid2,3,4,5,6-Pentahydroxyhexanoate2,3,4,5,6-Pentahydroxyhexanoic acidBoron gluconateD-GluconateD-Gluconic acidD-GluconsaeureD-GlukonsaeureD-gluco-HexonateD-gluco-Hexonic acidDextronateDextronic acidGCOGlosantoGluconateGluconic acid, (113)indium-labeledGluconic acid, (14)C-labeledGluconic acid, (159)dysprosium-labeled saltGluconic acid, (99)technecium (5+) saltGluconic acid, 1-(14)C-labeledGluconic acid, 6-(14)C-labeledGluconic acid, aluminum (3:1) saltGluconic acid, ammonium saltGluconic acid, calcium saltGluconic acid, cesium(+3) saltGluconic acid, cobalt (2:1) saltGluconic acid, copper saltGluconic acid, fe(+2) salt, dihydrateGluconic acid, lanthanum(+3) saltGluconic acid, magnesium (2:1) saltGluconic acid, manganese (2:1) saltGluconic acid, monolithium saltGluconic acid, monopotassium saltGluconic acid, monosodium saltGluconic acid, potassium saltGluconic acid, sodium saltGluconic acid, strontium (2:1) saltGluconic acid, tin(+2) saltGluconic acid, zinc saltGlycogenateGlycogenic acidGlyconateGlyconic acidHexonateHexonic acidLithium gluconateMagnerotMagnesium gluconateMaltonateMaltonic acidManganese gluconatePentahydroxycaproatePentahydroxycaproic acidSodium gluconateZinc gluconate |
Chemical formula | C6H12O7 |
IUPAC name | (2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoic acid |
CAS registry number | 526-95-4 |
Monoisotopic molecular weight | 196.058302738 |
Chemical taxonomy |
|
Super class | Organic oxygen compounds |
Class | Organooxygen compounds |
Sub class | Carbohydrates and carbohydrate conjugates |
Biological properties |
|
Pathways (Pathway Details in HMDB) |
|
Reference | Country | Specimen | Marker function | Participants (Case) | Participants (Control) | |||||||||
Cancer type | Stage | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | Type | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | ||||
Miyamoto et al. 2015 | US | blood | diagnosis | NSCLC, SCLC, mesothelioma, secondary metastasis to lung | I, II, III, IV | 11 | 4, 7 | 67 (61-73) / 67 (47-76) | smoker, non-smoker | healthy | 11 | 5, 6 | 69 (61-83) / 54 (44-61) | unknown |
Miyamoto et al. 2015 | US | blood | diagnosis | adenocarcinoma | unknown (mostly late stage) | 18 | 10, 8 | 67 (50-85) / 62 (53-72) | former, current | healthy | 20 | 8, 12 | 64 (49-80) / 66 (58-82) | former, current |
Ro?-Mazurczyk et al. 2017 | Poland | serum | diagnosis | adenocarcinoma, squamous cell carcinoma | I, II, III | 31 | 17, 14 | 52-72 | – | healthy | 92 | 52, 40 | 52-73 | – |
Ro?-Mazurczyk et al. 2017 | Poland | serum | diagnosis | adenocarcinoma, squamous cell carcinoma | I, II, III | 31 | 17, 14 | 52-72 | – | healthy | 92 | 52, 40 | 52-73 | – |
Mazzone et al. 2016 | US | serum | – | adenocarcinoma, squamous cell carcinoma | I, II, III | 94 | 55.3%, 44.7% | 68.7 | – | at-risk controls | 190 | 50.5%, 49.5% | 66.2 | – |
Fahrmann et al. 2015 | US | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Fahrmann et al. 2015 | US | serum | diagnosis | adenocarcinoma | I, II, III, IV | 49 | 17, 32 | 65.9 ± 9.87 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Fahrmann et al. 2015 | US | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 52 | 17, 35 | 65.9 ± 9.66 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Fahrmann et al. 2015 | US | serum | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Hori et al. 2011 | Japan | tissue | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | – | 7 | 6, 1 | median: 61 (53-82) | smoker, non-smoker | tumor vs. adjacent normal tissue | 7 | 6, 1 | median: 61 (53-82) | smoker, non-smoker |
Chen et al. 2015b | China | serum | – | lung cancer (postoperative) | – | 30 | – | 61.58 ± 10.67 | – | healthy | 30 | – | 60.35 ± 12.48 | – |
Wikoff et al. 2015b | US | tissue | diagnosis | adenocarcinoma | I | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker | tumor vs. adjacent normal tissue | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker |
Moreno et al. 2018 | Spain | tissue | therapy, diagnosis | adenocarcinoma | I, II, III | 33 | 24, 9 | 62.11 ± 9.73 | – | tumor vs. adjacent normal tissue | 33 | 24, 9 | 62.11 ± 9.73 | – |
Moreno et al. 2018 | Spain | tissue | therapy, diagnosis | squamous cell carcinoma | I, II, III | 35 | 35, 0 | 68.71 ± 7.46 | – | tumor vs. adjacent normal tissue | 35 | 35, 0 | 68.71 ± 7.46 | – |
Callejon-Leblic et al. 2019 | Spain | urine | diagnosis | NSCLC, SCLC | – | 32 | 22, 8 | 66 ± 12 | former, current, non-smoker | healthy | 29 | 18, 11 | 56 ± 13 | former, non-smoker |
Reference | Chromatography | Ion source | Positive/Negative mode | Mass analyzer | Identification level |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Ro?-Mazurczyk et al. 2017 | GC | – | – | TOF | In-source fragmentation |
Ro?-Mazurczyk et al. 2017 | GC | – | – | TOF | In-source fragmentation |
Mazzone et al. 2016 | GC | EI | – | quadrupole | MS/MS |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Hori et al. 2011 | GC | – | – | – | – |
Chen et al. 2015b | GC | EI | – | quadrupole | – |
Wikoff et al. 2015b | GC | EI | – | TOF | – |
Moreno et al. 2018 | LC, GC | ESI, EI | both | LC: linear ion-trap, GC: single-quadrupole | LC: MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | both | LC: linear ion-trap, GC: single-quadrupole | LC: MS/MS |
Callejon-Leblic et al. 2019 | GC | EI | – | ion trap | – |
Reference | Data processing software | Database search |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Ro?-Mazurczyk et al. 2017 | Leco ChromaTOF-GC | Replib, Mainlib and Fiehn libraries |
Ro?-Mazurczyk et al. 2017 | Leco ChromaTOF-GC | Replib, Mainlib and Fiehn libraries |
Mazzone et al. 2016 | Metabolon LIMS system | Metabolon LIMS system |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Chen et al. 2015b | ChemStation | NIST |
Wikoff et al. 2015b | BinBase | NIST11, BinBase |
Moreno et al. 2018 | – | KEGG, HMDB |
Moreno et al. 2018 | – | KEGG, HMDB |
Callejon-Leblic et al. 2019 | XCMS | NIST Mass Spectral Library |
Reference | Difference method | Mean concentration (case) | Mean concentration (control) | Fold change (case/control) | P-value | FDR | VIP |
Miyamoto et al. 2015 | Analysis of Covariance | 1560.63636363636 | 1274.18181818182 | 1.22 | 0.27 | – | – |
Miyamoto et al. 2015 | Analysis of Covariance | 1576.5 | 1274.25 | 1.24 | 0.26 | – | – |
Ro?-Mazurczyk et al. 2017 | two-sample T test, U Mann-Whitney test, Benjamini-Hochberg approach | 0.093606 ± 0.039298 | 0.089903 ± 0.045331 | 1.04 | 0.15 | 0.46 | – |
Ro?-Mazurczyk et al. 2017 | two-sample T test, U Mann-Whitney test, Benjamini-Hochberg approach | 0.19286 ± 0.12173 | 0.25519 ± 0.23889 | 0.76 | 0.25 | 0.59 | – |
Mazzone et al. 2016 | two- sample independent t test | 1.205331± 0.596744 | 1.080778± 0.4651412 | 1.12 | 0.05 | 0.12 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 142 ± 137 | 158 ± 66 | 0.90 | 0.01 | 0.09 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 207 ± 150 | 209 ± 71 | 0.99 | 0.15 | 0.50 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 215 ± 151 | 199 ± 61 | 1.08 | 0.67 | 0.88 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 254 ± 366 | 220 ± 74 | 1.16 | 0.77 | 0.94 | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 1.73 | 5.00e-03 | – | – |
Chen et al. 2015b | PCA, PLS-DA, independent t test | – | – | 1.32 | 1.00e-03 | – | 1.37 |
Wikoff et al. 2015b | OPLS-DA | – | – | 2.10 | – | 3.80e-04 | – |
Moreno et al. 2018 | paired two-sample t-test, PLS-DA | – | – | 0.89 | 0.37 | 0.43 | – |
Moreno et al. 2018 | paired two-sample t-test, PLS-DA | – | – | 0.74 | 0.03 | 0.04 | – |
Callejon-Leblic et al. 2019 | PLS-LDA, one-way ANOVA | – | – | 3.35 | 0.02 | – | 2.01 |
Reference | Classification method | Cutoff value | AUROC 95%CI | Sensitivity (%) | Specificity (%) | Accuracy (%) |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Ro?-Mazurczyk et al. 2017 | ROC curve | – | – | – | – | – |
Ro?-Mazurczyk et al. 2017 | ROC curve | – | – | – | – | – |
Mazzone et al. 2016 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Chen et al. 2015b | – | – | – | – | – | – |
Wikoff et al. 2015b | – | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Callejon-Leblic et al. 2019 | ROC curve analysis | – | 0.74 | – | – | – |