Metabolite information |
|
HMDB ID | HMDB0000148 |
Synonyms |
(2S)-2-Aminopentanedioate(2S)-2-Aminopentanedioic acid(S)-(+)-Glutamate(S)-(+)-Glutamic acid(S)-2-Aminopentanedioate(S)-2-Aminopentanedioic acid(S)-Glutamate(S)-Glutamic acid1-Aminopropane-1,3-dicarboxylate1-Aminopropane-1,3-dicarboxylic acid1-amino-Propane-1,3-dicarboxylate1-amino-Propane-1,3-dicarboxylic acid2-Aminoglutarate2-Aminoglutaric acid2-Aminopentanedioate2-Aminopentanedioic acidAcide glutamiqueAcidum glutamicumAciglutAluminum L glutamateAluminum L-glutamateAminoglutarateAminoglutaric acidD GlutamateD-GlutamateEGLUTAMIC ACIDGltGluGlusateGlutGlutacidGlutamateGlutamate, potassiumGlutamic acid, (D)-isomerGlutamicolGlutamidexGlutaminateGlutaminic acidGlutaminolGlutatonL GlutamateL Glutamic acidL-(+)-GlutamateL-(+)-Glutamic acidL-GluL-GlutamateL-Glutamate, aluminumL-GlutaminateL-Glutaminic acidL-GlutaminsaeureL-a-AminoglutarateL-a-Aminoglutaric acidL-alpha-AminoglutarateL-alpha-Aminoglutaric acidPotassium glutamatea-Aminoglutaratea-Aminoglutaric acida-Glutamatea-Glutamic acidacido Glutamicoalpha-Aminoglutaratealpha-Aminoglutaric acidalpha-Glutamatealpha-Glutamic acid |
Chemical formula | C5H9NO4 |
IUPAC name | (2S)-2-aminopentanedioic acid |
CAS registry number | 56-86-0 |
Monoisotopic molecular weight | 147.053157781 |
Chemical taxonomy |
|
Super class | Organic acids and derivatives |
Class | Carboxylic acids and derivatives |
Sub class | Amino acids, peptides, and analogues |
Biological properties |
|
Pathways (Pathway Details in HMDB) |
|
Reference | Country | Specimen | Marker function | Participants (Case) | Participants (Control) | |||||||||
Cancer type | Stage | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | Type | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | ||||
Miyamoto et al. 2015 | US | blood | diagnosis | NSCLC, SCLC, mesothelioma, secondary metastasis to lung | I, II, III, IV | 11 | 4, 7 | 67 (61-73) / 67 (47-76) | smoker, non-smoker | healthy | 11 | 5, 6 | 69 (61-83) / 54 (44-61) | unknown |
Miyamoto et al. 2015 | US | blood | diagnosis | adenocarcinoma | unknown (mostly late stage) | 18 | 10, 8 | 67 (50-85) / 62 (53-72) | former, current | healthy | 20 | 8, 12 | 64 (49-80) / 66 (58-82) | former, current |
Mazzone et al. 2016 | US | serum | – | adenocarcinoma, squamous cell carcinoma | I, II, III | 94 | 55.3%, 44.7% | 68.7 | – | at-risk controls | 190 | 50.5%, 49.5% | 66.2 | – |
Ro?-Mazurczyk et al. 2017 | Poland | serum | diagnosis | adenocarcinoma, squamous cell carcinoma | I, II, III | 31 | 17, 14 | 52-72 | – | healthy | 92 | 52, 40 | 52-73 | – |
Fahrmann et al. 2015 | US | serum | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Yue et al. 2018 | China | plasma | diagnosis | SCLC | – | 20 | – | – | – | healthy | 20 | – | – | – |
Fahrmann et al. 2015 | US | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Fahrmann et al. 2015 | US | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 52 | 17, 35 | 65.9 ± 9.66 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Ni et al. 2016 | China | serum | diagnosis | lung cancer | – | 40 | 14, 26 | 67 | – | healthy | 100 | – | – | – |
Klupczynska et al. 2016a | Poland | serum | diagnosis | adenocarcinoma, squamous cell carcinoma | I, II, III | 90 | 58, 32 | 64 (48-86) | current, non-smoker, unknown | healthy | 63 | 41, 22 | 62 (43-78) | smoker, non-smoker, unknown |
Fahrmann et al. 2015 | US | serum | diagnosis | adenocarcinoma | I, II, III, IV | 49 | 17, 32 | 65.9 ± 9.87 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Hori et al. 2011 | Japan | tissue | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | – | 7 | 6, 1 | median: 61 (53-82) | smoker, non-smoker | tumor vs. adjacent normal tissue | 7 | 6, 1 | median: 61 (53-82) | smoker, non-smoker |
Hori et al. 2011 | Japan | serum | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | I, II | 11 | – | – | – | healthy | 29 | 23, 6 | median: 64 (34-78) | smoker, non-smoker, unknown |
Hori et al. 2011 | Japan | serum | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | I, II, III, IV | 33 | 26, 7 | median: 65 (55-81) | smoker, non-smoker, unknown | healthy | 29 | 23, 6 | median: 64 (34-78) | smoker, non-smoker, unknown |
Hori et al. 2011 | Japan | serum | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | III, IV | 22 | – | – | – | healthy | 29 | 23, 6 | median: 64 (34-78) | smoker, non-smoker, unknown |
Wikoff et al. 2015b | US | tissue | diagnosis | adenocarcinoma | I | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker | tumor vs. adjacent normal tissue | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker |
Callejon-Leblic et al. 2016 | Spain | bronchoalveolar lavage fluid | diagnosis | lung cancer | – | 24 | 16, 8 | 66 ± 11 | – | noncancerous lung diseases | 31 | 23, 8 | 56 ± 13 | – |
Moreno et al. 2018 | Spain | tissue | therapy, diagnosis | squamous cell carcinoma | I, II, III | 35 | 35, 0 | 68.71 ± 7.46 | – | tumor vs. adjacent normal tissue | 35 | 35, 0 | 68.71 ± 7.46 | – |
Moreno et al. 2018 | Spain | tissue | therapy, diagnosis | adenocarcinoma | I, II, III | 33 | 24, 9 | 62.11 ± 9.73 | – | tumor vs. adjacent normal tissue | 33 | 24, 9 | 62.11 ± 9.73 | – |
Sappington et al. 2018 | US | lymph node aspirates | diagnosis | adenocarcinoma, squamous cell carcinoma | II, III, IV | 50 | 31, 19 | – | – | non-malignant | 29 | 15, 14 | – | – |
Sappington et al. 2018 | US | lymph node aspirates | diagnosis | adenocarcinoma | II, III, IV | 31 | 17, 14 | – | – | squamous cell carcinoma | 19 | 14, 5 | – | – |
Callej?n-Leblic et al. 2019 | Spain | blood | diagnosis | NSCLC, SCLC | II, III, IV | 30 | 25, 5 | 67 ± 12 | former, current, non-smoker | healthy | 30 | 14, 16 | 56 ± 14 | former, non-smoker |
Mu et al. 2019 | China | serum | diagnosis | NSCLC | I, II, III, IV | 30 | 0, 30 | 60.4 ± 9.7 | non-smoker | healthy | 30 | 0, 30 | 54.7 ± 14.3 | non-smoker |
Yang et al. 2020 | China | pleural effusion | diagnosis | adenocarcinoma | – | 46 | 15, 31 | 63 ± 12 | – | pulmonary tuberculosis, other pulmonary diseases | 32 | 26, 6 | 49 ± 19 | – |
Kowalczyk et al. 2021 | Poland | Tissue | diagnosis | adenocarcinoma (ADC) | I, II, III | 33 | 23, 10 | 64.77 ± 8.44 | – | healthy control | 20 | 13, 7 | 61.5 ± 12.06 | – |
Kowalczyk et al. 2021 | Poland | Tissue | diagnosis | adenocarcinoma (ADC) | I, II, III | 33 | 23, 10 | 64.77 ± 8.44 | – | healthy control | 20 | 13, 7 | 61.5 ± 12.06 | – |
Kowalczyk et al. 2021 | Poland | Tissue | diagnosis | adenocarcinoma (ADC) | I, II, III | 33 | 23, 10 | 64.77 ± 8.44 | – | healthy control | 20 | 13, 7 | 61.5 ± 12.06 | – |
Kowalczyk et al. 2021 | Poland | Tissue | diagnosis | squemous cell carcinoma (SCC) | I, II, III | 54 | 39, 15 | 64.45 ± 8.02 | – | healthy control | 20 | 13, 7 | 61.5 ± 12.06 | – |
Kowalczyk et al. 2021 | Poland | Tissue | diagnosis | squemous cell carcinoma (SCC) | I, II, III | 54 | 39, 15 | 64.45 ± 8.02 | – | healthy control | 20 | 13, 7 | 61.5 ± 12.06 | – |
Kowalczyk et al. 2021 | Poland | Tissue | diagnosis | squemous cell carcinoma (SCC) | I, II, III | 54 | 39, 15 | 64.45 ± 8.02 | – | healthy control | 20 | 13, 7 | 61.5 ± 12.06 | – |
Reference | Chromatography | Ion source | Positive/Negative mode | Mass analyzer | Identification level |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Mazzone et al. 2016 | GC | EI | – | quadrupole | MS/MS |
Ro?-Mazurczyk et al. 2017 | GC | – | – | TOF | In-source fragmentation |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Yue et al. 2018 | LC | ESI | both | QTRAP | MS/MS |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Ni et al. 2016 | LC | ESI | positive | Triple quadrupole | MS/MS |
Klupczynska et al. 2016a | LC | – | – | QTRAP | MS/MS |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Hori et al. 2011 | GC | – | – | – | – |
Hori et al. 2011 | GC | – | – | – | – |
Hori et al. 2011 | GC | – | – | – | – |
Hori et al. 2011 | GC | – | – | – | – |
Wikoff et al. 2015b | GC | EI | – | TOF | – |
Callejon-Leblic et al. 2016 | DI | ESI | positive | Q-TOF | MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | both | LC: linear ion-trap, GC: single-quadrupole | LC: MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | both | LC: linear ion-trap, GC: single-quadrupole | LC: MS/MS |
Sappington et al. 2018 | LC | ESI | positive | Q-TOF | MS/MS |
Sappington et al. 2018 | LC | ESI | positive | Q-TOF | MS/MS |
Callej?n-Leblic et al. 2019 | DI | ESI | positive | Q-TOF | MS/MS |
Mu et al. 2019 | GC | – | – | – | – |
Yang et al. 2020 | LC | ESI | positive | Q-Orbitrap | MS/MS |
Kowalczyk et al. 2021 | LC | ESI | both | Q-TOF | – |
Kowalczyk et al. 2021 | LC | ESI | both | Q-TOF | – |
Kowalczyk et al. 2021 | LC | ESI | both | Q-TOF | – |
Kowalczyk et al. 2021 | LC | ESI | both | Q-TOF | – |
Kowalczyk et al. 2021 | LC | ESI | both | Q-TOF | – |
Kowalczyk et al. 2021 | LC | ESI | both | Q-TOF | – |
Reference | Data processing software | Database search |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Mazzone et al. 2016 | Metabolon LIMS system | Metabolon LIMS system |
Ro?-Mazurczyk et al. 2017 | Leco ChromaTOF-GC | Replib, Mainlib and Fiehn libraries |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Yue et al. 2018 | Analyst, MultiQuant | – |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Ni et al. 2016 | – | – |
Klupczynska et al. 2016a | – | – |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Wikoff et al. 2015b | BinBase | NIST11, BinBase |
Callejon-Leblic et al. 2016 | Markerview | HMDB, METLIN |
Moreno et al. 2018 | – | KEGG, HMDB |
Moreno et al. 2018 | – | KEGG, HMDB |
Sappington et al. 2018 | MassHunter, MassProfilerProfessional | HMDB |
Sappington et al. 2018 | MassHunter, MassProfilerProfessional | HMDB |
Callej?n-Leblic et al. 2019 | – | HMDB, Metlin |
Mu et al. 2019 | – | – |
Yang et al. 2020 | XCMS | HMDB, METLIN, LipidSearch |
Kowalczyk et al. 2021 | Mass Hunter Qualitative Analysis Software, Mass Profiler Professional | METLIN, KEGG, LIPIDMAPS, and HMDB |
Kowalczyk et al. 2021 | Mass Hunter Qualitative Analysis Software, Mass Profiler Professional | METLIN, KEGG, LIPIDMAPS, and HMDB |
Kowalczyk et al. 2021 | Mass Hunter Qualitative Analysis Software, Mass Profiler Professional | METLIN, KEGG, LIPIDMAPS, and HMDB |
Kowalczyk et al. 2021 | Mass Hunter Qualitative Analysis Software, Mass Profiler Professional | METLIN, KEGG, LIPIDMAPS, and HMDB |
Kowalczyk et al. 2021 | Mass Hunter Qualitative Analysis Software, Mass Profiler Professional | METLIN, KEGG, LIPIDMAPS, and HMDB |
Kowalczyk et al. 2021 | Mass Hunter Qualitative Analysis Software, Mass Profiler Professional | METLIN, KEGG, LIPIDMAPS, and HMDB |
Reference | Difference method | Mean concentration (case) | Mean concentration (control) | Fold change (case/control) | P-value | FDR | VIP |
Miyamoto et al. 2015 | Analysis of Covariance | 31486.3636363636 | 34887.1818181818 | 0.90 | 0.91 | – | – |
Miyamoto et al. 2015 | Analysis of Covariance | 39179.2222222222 | 27793.75 | 1.41 | 0.03 | – | – |
Mazzone et al. 2016 | two- sample independent t test | 1.125203± 0.4834663 | 1.039322± 0.4192745 | 1.08 | 0.12 | 0.22 | – |
Ro?-Mazurczyk et al. 2017 | two-sample T test, U Mann-Whitney test, Benjamini-Hochberg approach | 1.5425 ± 1.0398 | 1.5055 ± 1.5135 | 1.02 | 0.40 | 0.68 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 11081 ± 4803 | 5709 ± 2286 | 1.94 | 0.00e+00 | 1.00e-03 | – |
Yue et al. 2018 | OPLS-DA, student’s t-test | 1532.78±321.05 ng/mL | 1092.18±192.11 ng/mL | 3.07 | 5.05e-06 | – | 1.58 |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 4070 ± 1522 | 3213 ± 1694 | 1.27 | 3.00e-03 | 0.04 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 7102 ± 3398 | 5700 ± 1876 | 1.25 | 0.02 | 0.19 | – |
Ni et al. 2016 | one-way ANOVA | 76.50 ± 21.56 μmol/L | 87.55 ± 27.25 μmol/L | – | 0.02 | – | – |
Klupczynska et al. 2016a | t-test, Welch’s t-test or the Mann-Whitney U test, one-way ANOVA | 80.81±36.92 ?M | 72.48±40.75 ?M | 1.11 | 0.08 | – | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 9148 ± 4508 | 6083 ± 1891 | 1.50 | 0.00e+00 | 0.04 | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 2.31 | 3.00e-03 | – | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 0.83 | 0.37 | – | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 0.72 | 0.03 | – | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 0.67 | 0.03 | – | – |
Wikoff et al. 2015b | OPLS-DA | – | – | 1.40 | – | 2.00e-03 | – |
Callejon-Leblic et al. 2016 | PLS-LDA, one-way ANOVA | – | – | 0.84 | 0.02 | – | 1.58 |
Moreno et al. 2018 | paired two-sample t-test, PLS-DA | – | – | 1.46 | 2.96e-10 | 1.62e-09 | – |
Moreno et al. 2018 | paired two-sample t-test, PLS-DA | – | – | 1.24 | 1.96e-04 | 6.14e-04 | – |
Sappington et al. 2018 | OPLS-DA, PLS-DA | – | – | 1.44 | 0.04 | – | – |
Sappington et al. 2018 | OPLS-DA, PLS-DA | – | – | 1.10 | 0.74 | – | – |
Callej?n-Leblic et al. 2019 | PCA, PLS-DA, one-way ANOVA | – | – | 1.35 | 2.00e-04 | – | 1.35 |
Mu et al. 2019 | PCA, PLS-DA, Mann-Whitney U test | – | – | 0.38 | 1.00e-03 | 1.00e-03 | 1.72 |
Yang et al. 2020 | PLS-DA | – | – | 1.84 | – | 1.20e-04 | 1.69 |
Kowalczyk et al. 2021 | Mann–Whitney U-test and Benjamini–Hochberg false discovery rate, partial least squares discriminant analysis (PLS-DA) | – | – | – | 6.95e-03 | – | – |
Kowalczyk et al. 2021 | Mann–Whitney U-test and Benjamini–Hochberg false discovery rate, partial least squares discriminant analysis (PLS-DA) | – | – | – | 0.03 | – | – |
Kowalczyk et al. 2021 | Mann–Whitney U-test and Benjamini–Hochberg false discovery rate, partial least squares discriminant analysis (PLS-DA) | – | – | – | 5.85e-03 | – | – |
Kowalczyk et al. 2021 | Mann–Whitney U-test and Benjamini–Hochberg false discovery rate, partial least squares discriminant analysis (PLS-DA) | – | – | – | 1.28e-04 | – | – |
Kowalczyk et al. 2021 | Mann–Whitney U-test and Benjamini–Hochberg false discovery rate, partial least squares discriminant analysis (PLS-DA) | – | – | – | 1.95e-03 | – | – |
Kowalczyk et al. 2021 | Mann–Whitney U-test and Benjamini–Hochberg false discovery rate, partial least squares discriminant analysis (PLS-DA) | – | – | – | 0.02 | – | – |
Reference | Classification method | Cutoff value | AUROC 95%CI | Sensitivity (%) | Specificity (%) | Accuracy (%) |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Mazzone et al. 2016 | – | – | – | – | – | – |
Ro?-Mazurczyk et al. 2017 | ROC curve | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Yue et al. 2018 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Ni et al. 2016 | – | – | – | – | – | – |
Klupczynska et al. 2016a | ROC curve analysis (Monte-Carlo cross validation), discriminant function analysis | – | 0.584 | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Wikoff et al. 2015b | – | – | – | – | – | – |
Callejon-Leblic et al. 2016 | ROC curve analysis | – | 0.51 | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Sappington et al. 2018 | – | – | – | – | – | – |
Sappington et al. 2018 | – | – | – | – | – | – |
Callej?n-Leblic et al. 2019 | ROC curve | – | 0.71 | – | – | – |
Mu et al. 2019 | – | – | – | – | – | – |
Yang et al. 2020 | ROC analysis | – | 0.839 | – | – | – |
Kowalczyk et al. 2021 | – | – | – | – | – | – |
Kowalczyk et al. 2021 | – | – | – | – | – | – |
Kowalczyk et al. 2021 | – | – | – | – | – | – |
Kowalczyk et al. 2021 | – | – | – | – | – | – |
Kowalczyk et al. 2021 | – | – | – | – | – | – |
Kowalczyk et al. 2021 | – | – | – | – | – | – |