Metabolite information |
|
HMDB ID | HMDB0000806 |
Synonyms |
1-Tetradecanecarboxylate1-Tetradecanecarboxylic acid1-Tridecanecarboxylate1-Tridecanecarboxylic acid1414:014:00Acid, myristicAcid, tetradecanoicAcide tetradecanoiqueC14CH3-[CH2]12-COOHCrodacidMyristateMyristic acid pureMyristinsaeureMyristoateMyristoic acidN-Tetradecan-1-OateN-Tetradecan-1-Oic acidN-TetradecanoateN-Tetradecanoic acidN-TetradecoateN-Tetradecoic acidTetradecanoateTetradecanoic (myristic) acidTetradecanoic acidTetradecoateTetradecoic acid |
Chemical formula | C14H28O2 |
IUPAC name | tetradecanoic acid |
CAS registry number | 544-63-8 |
Monoisotopic molecular weight | 228.20893014 |
Chemical taxonomy |
|
Super class | Lipids and lipid-like molecules |
Class | Fatty Acyls |
Sub class | Fatty acids and conjugates |
Biological properties |
|
Pathways (Pathway Details in HMDB) |
|
Reference | Country | Specimen | Marker function | Participants (Case) | Participants (Control) | |||||||||
Cancer type | Stage | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | Type | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | ||||
Miyamoto et al. 2015 | US | blood | diagnosis | NSCLC, SCLC, mesothelioma, secondary metastasis to lung | I, II, III, IV | 11 | 4, 7 | 67 (61-73) / 67 (47-76) | smoker, non-smoker | healthy | 11 | 5, 6 | 69 (61-83) / 54 (44-61) | unknown |
Miyamoto et al. 2015 | US | blood | diagnosis | adenocarcinoma | unknown (mostly late stage) | 18 | 10, 8 | 67 (50-85) / 62 (53-72) | former, current | healthy | 20 | 8, 12 | 64 (49-80) / 66 (58-82) | former, current |
Ro?-Mazurczyk et al. 2017 | Poland | serum | diagnosis | adenocarcinoma, squamous cell carcinoma | I, II, III | 31 | 17, 14 | 52-72 | – | healthy | 92 | 52, 40 | 52-73 | – |
Ro?-Mazurczyk et al. 2017 | Poland | serum | diagnosis | adenocarcinoma, squamous cell carcinoma | I, II, III | 31 | 17, 14 | 52-72 | – | healthy | 92 | 52, 40 | 52-73 | – |
Mazzone et al. 2016 | US | serum | – | adenocarcinoma, squamous cell carcinoma | I, II, III | 94 | 55.3%, 44.7% | 68.7 | – | at-risk controls | 190 | 50.5%, 49.5% | 66.2 | – |
Fahrmann et al. 2015 | US | serum | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Fahrmann et al. 2015 | US | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 52 | 17, 35 | 65.9 ± 9.66 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Fahrmann et al. 2015 | US | serum | diagnosis | adenocarcinoma | I, II, III, IV | 49 | 17, 32 | 65.9 ± 9.87 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Fahrmann et al. 2015 | US | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Hori et al. 2011 | Japan | serum | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | III, IV | 22 | – | – | – | healthy | 29 | 23, 6 | median: 64 (34-78) | smoker, non-smoker, unknown |
Hori et al. 2011 | Japan | serum | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | I, II, III, IV | 33 | 26, 7 | median: 65 (55-81) | smoker, non-smoker, unknown | healthy | 29 | 23, 6 | median: 64 (34-78) | smoker, non-smoker, unknown |
Hori et al. 2011 | Japan | serum | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | I, II | 11 | – | – | – | healthy | 29 | 23, 6 | median: 64 (34-78) | smoker, non-smoker, unknown |
Hori et al. 2011 | Japan | tissue | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | – | 7 | 6, 1 | median: 61 (53-82) | smoker, non-smoker | tumor vs. adjacent normal tissue | 7 | 6, 1 | median: 61 (53-82) | smoker, non-smoker |
Chen et al. 2015b | China | serum | – | lung cancer | – | 30 | – | 61.58 ± 10.67 | – | healthy | 30 | – | 60.35 ± 12.48 | – |
Chen et al. 2015b | China | serum | – | lung cancer | – | 30 | – | 61.58 ± 10.67 | – | before vs. after treatment (operation) | 30 | – | 61.58 ± 10.67 | – |
Wikoff et al. 2015b | US | tissue | diagnosis | adenocarcinoma | I | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker | tumor vs. adjacent normal tissue | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker |
Huang et al. 2016 | China | dried blood spot | diagnosis | lung cancer | – | 222 | 94, 128 | median: 57.47 (27-81) | – | healthy | 96 | 30, 66 | median: 56.07 (32-80) | – |
Huang et al. 2016 | China | dried blood spot | diagnosis | benign lung disease | – | 118 | 55, 63 | median: 59.61 (32-80) | – | healthy | 96 | 30, 66 | median: 56.07 (32-80) | – |
Moreno et al. 2018 | Spain | tissue | therapy, diagnosis | adenocarcinoma | I, II, III | 33 | 24, 9 | 62.11 ± 9.73 | – | tumor vs. adjacent normal tissue | 33 | 24, 9 | 62.11 ± 9.73 | – |
Moreno et al. 2018 | Spain | tissue | therapy, diagnosis | squamous cell carcinoma | I, II, III | 35 | 35, 0 | 68.71 ± 7.46 | – | tumor vs. adjacent normal tissue | 35 | 35, 0 | 68.71 ± 7.46 | – |
Callejon-Leblic et al. 2019 | Spain | serum | diagnosis | NSCLC, SCLC | – | 32 | 22, 8 | 66 ± 12 | former, current, non-smoker | healthy | 29 | 18, 11 | 56 ± 13 | former, non-smoker |
Mu et al. 2019 | China | serum | diagnosis | NSCLC | I, II, III, IV | 30 | 0, 30 | 60.4 ± 9.7 | non-smoker | healthy | 30 | 0, 30 | 54.7 ± 14.3 | non-smoker |
Qi et al. 2021 | China | blood | diagnosis | adenocarcinoma, squamous cell carcinoma, small cell lung cancer, other types, unknown types | I, II, III, IV | 98 | 51, 47 | Median: 50 (32-69) | – | healthy | 75 | 36, 39 | Median: 50 (31-69) | – |
Reference | Chromatography | Ion source | Positive/Negative mode | Mass analyzer | Identification level |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Ro?-Mazurczyk et al. 2017 | GC | – | – | TOF | In-source fragmentation |
Ro?-Mazurczyk et al. 2017 | GC | – | – | TOF | In-source fragmentation |
Mazzone et al. 2016 | LC | ESI | negative | linear ion-trap | MS/MS |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Hori et al. 2011 | GC | – | – | – | – |
Hori et al. 2011 | GC | – | – | – | – |
Hori et al. 2011 | GC | – | – | – | – |
Hori et al. 2011 | GC | – | – | – | – |
Chen et al. 2015b | GC | EI | – | quadrupole | – |
Chen et al. 2015b | GC | EI | – | quadrupole | – |
Wikoff et al. 2015b | GC | EI | – | TOF | – |
Huang et al. 2016 | LC | ESI | positive | QTrap | MS/MS |
Huang et al. 2016 | LC | ESI | positive | QTrap | MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | both | LC: linear ion-trap, GC: single-quadrupole | LC: MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | both | LC: linear ion-trap, GC: single-quadrupole | LC: MS/MS |
Callejon-Leblic et al. 2019 | GC | EI | – | ion trap | – |
Mu et al. 2019 | GC | – | – | – | – |
Qi et al. 2021 | LC | ESI | both | Q-Orbitrap | MS/MS |
Reference | Data processing software | Database search |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Ro?-Mazurczyk et al. 2017 | Leco ChromaTOF-GC | Replib, Mainlib and Fiehn libraries |
Ro?-Mazurczyk et al. 2017 | Leco ChromaTOF-GC | Replib, Mainlib and Fiehn libraries |
Mazzone et al. 2016 | Metabolon LIMS system | Metabolon LIMS system |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Chen et al. 2015b | ChemStation | NIST |
Chen et al. 2015b | ChemStation | NIST |
Wikoff et al. 2015b | BinBase | NIST11, BinBase |
Huang et al. 2016 | Analyst software, ChemoView software | – |
Huang et al. 2016 | Analyst software, ChemoView software | – |
Moreno et al. 2018 | – | KEGG, HMDB |
Moreno et al. 2018 | – | KEGG, HMDB |
Callejon-Leblic et al. 2019 | XCMS | NIST Mass Spectral Library |
Mu et al. 2019 | – | – |
Qi et al. 2021 | ProteoWizard, XCMS, Xcalibur, CAMERA | mzCloud, ChemSpider, LipidBlast and Fiehn HILIC |
Reference | Difference method | Mean concentration (case) | Mean concentration (control) | Fold change (case/control) | P-value | FDR | VIP |
Miyamoto et al. 2015 | Analysis of Covariance | 4617.45454545455 | 3964.81818181818 | 1.16 | 0.90 | – | – |
Miyamoto et al. 2015 | Analysis of Covariance | 4762.38888888889 | 3867.2 | 1.23 | 0.23 | – | – |
Ro?-Mazurczyk et al. 2017 | two-sample T test, U Mann-Whitney test, Benjamini-Hochberg approach | 0.11147 ± 0.051075 | 0.11417 ± 0.054058 | 0.98 | 0.76 | 0.85 | – |
Ro?-Mazurczyk et al. 2017 | two-sample T test, U Mann-Whitney test, Benjamini-Hochberg approach | 0.69566 ± 0.45751 | 0.89545 ± 1.0872 | 0.78 | 0.29 | 0.63 | – |
Mazzone et al. 2016 | two- sample independent t test | 1.178252± 0.5712113 | 1.107921± 0.8465139 | 1.06 | 0.47 | 0.55 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 1063 ± 548 | 1005 ± 287 | 1.06 | 0.87 | 0.95 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 1162 ± 532 | 977 ± 393 | 1.19 | 0.23 | 0.60 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 1239 ± 535 | 1070 ± 403 | 1.16 | 0.26 | 0.59 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 681 ± 266 | 632 ± 191 | 1.08 | 0.36 | 0.63 | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 0.89 | 0.34 | – | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 0.88 | 0.09 | – | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 0.86 | 0.18 | – | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 0.69 | 0.02 | – | – |
Chen et al. 2015b | PCA, PLS-DA, independent t test | – | – | 1.29 | 1.00e-03 | – | 1.21 |
Chen et al. 2015b | PCA, PLS-DA, independent t test | – | – | 0.71 | 1.00e-03 | – | 1.30 |
Wikoff et al. 2015b | OPLS-DA | – | – | 1.10 | – | 0.08 | – |
Huang et al. 2016 | PLS-DA, ANOVA, student’s t-test | – | – | – | 1.00e-03 | – | – |
Huang et al. 2016 | PLS-DA, ANOVA, student’s t-test | – | – | – | 0.02 | – | – |
Moreno et al. 2018 | paired two-sample t-test, PLS-DA | – | – | 1.42 | 7.20e-04 | 1.86e-03 | – |
Moreno et al. 2018 | paired two-sample t-test, PLS-DA | – | – | 1.36 | 4.37e-05 | 8.42e-05 | – |
Callejon-Leblic et al. 2019 | PLS-LDA, one-way ANOVA | – | – | 0.50 | 0.04 | – | 2.42 |
Mu et al. 2019 | PCA, PLS-DA, Mann-Whitney U test | – | – | 0.77 | 1.00e-03 | 0.02 | 1.03 |
Qi et al. 2021 | PCA, OPLS-DA, Student’s t test | – | – | 1.53 | 0.01 | – | 1.85 |
Reference | Classification method | Cutoff value | AUROC 95%CI | Sensitivity (%) | Specificity (%) | Accuracy (%) |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Ro?-Mazurczyk et al. 2017 | ROC curve | – | – | – | – | – |
Ro?-Mazurczyk et al. 2017 | ROC curve | – | – | – | – | – |
Mazzone et al. 2016 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Chen et al. 2015b | – | – | – | – | – | – |
Chen et al. 2015b | – | – | – | – | – | – |
Wikoff et al. 2015b | – | – | – | – | – | – |
Huang et al. 2016 | – | – | – | – | – | – |
Huang et al. 2016 | – | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Callejon-Leblic et al. 2019 | ROC curve analysis | – | 0.73 | – | – | – |
Mu et al. 2019 | – | – | – | – | – | – |
Qi et al. 2021 | – | – | – | – | – | – |