Metabolite information |
|
HMDB ID | HMDB0000943 |
Synonyms |
(R*,s*)-2,3,4-trihydroxy-butanoate(R*,s*)-2,3,4-trihydroxy-butanoic acid2,3,4-Trihydroxy-(threo)-butanoic acidCalcium L-threonateCalcium threonateMagnesium threonateThreonateThreonic acid, (R-(r*,s*))-isomerThreonic acid, (r*,r*)-isomerthreo-2,3,4-Trihydroxybutyratethreo-2,3,4-Trihydroxybutyric acid |
Chemical formula | C4H8O5 |
IUPAC name | (2S,3R)-2,3,4-trihydroxybutanoic acid |
CAS registry number | 3909-12-4 |
Monoisotopic molecular weight | 136.037173366 |
Chemical taxonomy |
|
Super class | Organic oxygen compounds |
Class | Organooxygen compounds |
Sub class | Carbohydrates and carbohydrate conjugates |
Biological properties |
|
Pathways (Pathway Details in HMDB) |
|
Reference | Country | Specimen | Marker function | Participants (Case) | Participants (Control) | |||||||||
Cancer type | Stage | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | Type | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | ||||
Miyamoto et al. 2015 | US | blood | diagnosis | adenocarcinoma | unknown (mostly late stage) | 18 | 10, 8 | 67 (50-85) / 62 (53-72) | former, current | healthy | 20 | 8, 12 | 64 (49-80) / 66 (58-82) | former, current |
Miyamoto et al. 2015 | US | blood | diagnosis | NSCLC, SCLC, mesothelioma, secondary metastasis to lung | I, II, III, IV | 11 | 4, 7 | 67 (61-73) / 67 (47-76) | smoker, non-smoker | healthy | 11 | 5, 6 | 69 (61-83) / 54 (44-61) | unknown |
Miyamoto et al. 2015 | US | blood | diagnosis | adenocarcinoma | unknown (mostly late stage) | 18 | 10, 8 | 67 (50-85) / 62 (53-72) | former, current | healthy | 20 | 8, 12 | 64 (49-80) / 66 (58-82) | former, current |
Miyamoto et al. 2015 | US | blood | diagnosis | NSCLC, SCLC, mesothelioma, secondary metastasis to lung | I, II, III, IV | 11 | 4, 7 | 67 (61-73) / 67 (47-76) | smoker, non-smoker | healthy | 11 | 5, 6 | 69 (61-83) / 54 (44-61) | unknown |
Fahrmann et al. 2015 | US | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 52 | 17, 35 | 65.9 ± 9.66 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Fahrmann et al. 2015 | US | serum | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Fahrmann et al. 2015 | US | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Fahrmann et al. 2015 | US | serum | diagnosis | adenocarcinoma | I, II, III, IV | 49 | 17, 32 | 65.9 ± 9.87 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Fahrmann et al. 2015 | US | serum | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Fahrmann et al. 2015 | US | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Fahrmann et al. 2015 | US | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 52 | 17, 35 | 65.9 ± 9.66 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Fahrmann et al. 2015 | US | serum | diagnosis | adenocarcinoma | I, II, III, IV | 49 | 17, 32 | 65.9 ± 9.87 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Wikoff et al. 2015b | US | tissue | diagnosis | adenocarcinoma | I | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker | tumor vs. adjacent normal tissue | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker |
Wikoff et al. 2015b | US | tissue | diagnosis | adenocarcinoma | I | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker | tumor vs. adjacent normal tissue | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker |
Callejon-Leblic et al. 2019 | Spain | urine | diagnosis | NSCLC, SCLC | – | 32 | 22, 8 | 66 ± 12 | former, current, non-smoker | healthy | 29 | 18, 11 | 56 ± 13 | former, non-smoker |
Qi et al. 2021 | China | blood | diagnosis | adenocarcinoma, squamous cell carcinoma, small cell lung cancer, other types, unknown types | I, II, III, IV | 98 | 51, 47 | Median: 50 (32-69) | – | healthy | 75 | 36, 39 | Median: 50 (31-69) | – |
Zheng et al. 2021 | China | Serum | diagnosis | lung cancer | I, II, III, IV | 57 | 38, 19 | Median: 62 (52-69) | smoker, non-smoker | healthy | 59 | 48, 11 | Median: 60 (59-62) | smoker, non-smoker |
Kowalczyk et al. 2021 | Poland | Tissue | diagnosis | adenocarcinoma (ADC) | I, II, III | 33 | 23, 10 | 64.77 ± 8.44 | – | healthy control | 20 | 13, 7 | 61.5 ± 12.06 | – |
Kowalczyk et al. 2021 | Poland | Tissue | diagnosis | squemous cell carcinoma (SCC) | I, II, III | 54 | 39, 15 | 64.45 ± 8.02 | – | adenocarcinoma (ADC) | 33 | 23, 10 | 64.77 ± 8.44 | – |
Reference | Chromatography | Ion source | Positive/Negative mode | Mass analyzer | Identification level |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Wikoff et al. 2015b | GC | EI | – | TOF | – |
Wikoff et al. 2015b | GC | EI | – | TOF | – |
Callejon-Leblic et al. 2019 | GC | EI | – | ion trap | – |
Qi et al. 2021 | LC | ESI | both | Q-Orbitrap | MS/MS |
Zheng et al. 2021 | GC | EI | – | quadrupole | – |
Kowalczyk et al. 2021 | LC | ESI | both | Q-TOF | – |
Kowalczyk et al. 2021 | LC | ESI | both | Q-TOF | – |
Reference | Data processing software | Database search |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Wikoff et al. 2015b | BinBase | NIST11, BinBase |
Wikoff et al. 2015b | BinBase | NIST11, BinBase |
Callejon-Leblic et al. 2019 | XCMS | NIST Mass Spectral Library |
Qi et al. 2021 | ProteoWizard, XCMS, Xcalibur, CAMERA | mzCloud, ChemSpider, LipidBlast and Fiehn HILIC |
Zheng et al. 2021 | MassHunter Workstation software, Mass Profiler Professional software | NIST14, HMDB, Golm Metabolome Database |
Kowalczyk et al. 2021 | Mass Hunter Qualitative Analysis Software, Mass Profiler Professional | METLIN, KEGG, LIPIDMAPS, and HMDB |
Kowalczyk et al. 2021 | Mass Hunter Qualitative Analysis Software, Mass Profiler Professional | METLIN, KEGG, LIPIDMAPS, and HMDB |
Reference | Difference method | Mean concentration (case) | Mean concentration (control) | Fold change (case/control) | P-value | FDR | VIP |
Miyamoto et al. 2015 | Analysis of Covariance | 3336.72222222222 | 3483.7 | 0.96 | 0.78 | – | – |
Miyamoto et al. 2015 | Analysis of Covariance | 3438.72727272727 | 3389.36363636364 | 1.01 | 0.73 | – | – |
Miyamoto et al. 2015 | Analysis of Covariance | 13104.7222222222 | 18193.75 | 0.72 | 0.06 | – | – |
Miyamoto et al. 2015 | Analysis of Covariance | 13327.0909090909 | 18239.2727272727 | 0.73 | 0.18 | – | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 1000 ± 624 | 1211 ± 686 | 0.83 | 0.26 | 0.63 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 1109 ± 717 | 1377 ± 645 | 0.81 | 6.00e-03 | 0.07 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 1222 ± 722 | 2000 ± 1341 | 0.61 | 2.00e-03 | 0.03 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 1994 ± 1279 | 2371 ± 1581 | 0.84 | 0.34 | 0.65 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 3196 ± 2751 | 4221 ± 2967 | 0.76 | 0.04 | 0.24 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 584 ± 339 | 720 ± 347 | 0.81 | 7.00e-03 | 0.06 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 604 ± 803 | 525 ± 146 | 1.15 | 0.76 | 0.90 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 640 ± 716 | 592 ± 162 | 1.08 | 0.51 | 0.74 | – |
Wikoff et al. 2015b | OPLS-DA | – | – | 1.30 | – | 8.00e-03 | – |
Wikoff et al. 2015b | OPLS-DA | – | – | 1.20 | – | 0.65 | – |
Callejon-Leblic et al. 2019 | PLS-LDA, one-way ANOVA | – | – | 2.03 | 9.00e-03 | – | 1.93 |
Qi et al. 2021 | PCA, OPLS-DA, Student’s t test | – | – | 1.38 | 5.77e-07 | – | 2.10 |
Zheng et al. 2021 | Student’s t-test, Mann–Whitney U test, PCA, PLS-DA, and OPLS-DA | – | – | 0.89 | 3.61e-18 | 1.62e-17 | 1.20 |
Kowalczyk et al. 2021 | Mann–Whitney U-test and Benjamini–Hochberg false discovery rate, partial least squares discriminant analysis (PLS-DA) | – | – | – | 3.21e-03 | – | – |
Kowalczyk et al. 2021 | Mann–Whitney U-test and Benjamini–Hochberg false discovery rate, partial least squares discriminant analysis (PLS-DA) | – | – | – | 0.03 | – | – |
Reference | Classification method | Cutoff value | AUROC 95%CI | Sensitivity (%) | Specificity (%) | Accuracy (%) |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Wikoff et al. 2015b | – | – | – | – | – | – |
Wikoff et al. 2015b | – | – | – | – | – | – |
Callejon-Leblic et al. 2019 | ROC curve analysis | – | 0.7 | – | – | – |
Qi et al. 2021 | – | – | – | – | – | – |
Zheng et al. 2021 | – | – | – | – | – | – |
Kowalczyk et al. 2021 | – | – | – | – | – | – |
Kowalczyk et al. 2021 | – | – | – | – | – | – |