Metabolite information |
|
HMDB ID | HMDB0000207 |
Synonyms |
(9Z)-9-Octadecenoate(9Z)-9-Octadecenoic acid(9Z)-Octadecenoate(9Z)-Octadecenoic acid(Z)-9-Octadecanoate(Z)-9-Octadecanoic acid(Z)-Octadec-9-enoate(Z)-Octadec-9-enoic acid18:1 N-918:1DElta9cis9 Octadecenoic acid9,10-Octadecenoate9,10-Octadecenoic acid9-(Z)-Octadecenoate9-(Z)-Octadecenoic acid9-Octadecenoate9-Octadecenoic acidAcid, 9-octadecenoicAcid, cis-9-octadecenoicAcid, oleicC18:1 N-9Century CD fatty acidDistolineEmersol 210Emersol 211Emersol 213Emersol 220 white oleateEmersol 220 white oleic acidEmersol 221 low titer white oleateEmersol 221 low titer white oleic acidEmersol 233LLEmersol 6321Emersol 6333 NFEmersol 7021Glycon roGlycon woIndustrene 104Industrene 105Industrene 205Industrene 206L'acide oleiqueMetauponOctadec-9-enoateOctadec-9-enoic acidOelsaeureOelsauereOleateOleic acid extra pureOleinateOleinic acidPamolynPamolyn 100Pamolyn 100 FGPamolyn 100 FGKPamolyn 125Priolene 6900Red oilVopcolene 27Wecoline ooZ-9-OctadecenoateZ-9-Octadecenoic acidcis 9 Octadecenoic acidcis-9-Octadecenoatecis-9-Octadecenoic acidcis-Delta(9)-Octadecenoic acidcis-Octadec-9-enoatecis-Octadec-9-enoic acidcis-Oleatecis-Oleic acidcis-delta(9)-Octadecenoatecis-δ(9)-octadecenoatecis-δ(9)-octadecenoic acidgroco 2groco 4groco 5lgroco 6tego-Oleic 130 |
Chemical formula | C18H34O2 |
IUPAC name | (9Z)-octadec-9-enoic acid |
CAS registry number | 112-80-1 |
Monoisotopic molecular weight | 282.255880332 |
Chemical taxonomy |
|
Super class | Lipids and lipid-like molecules |
Class | Fatty Acyls |
Sub class | Fatty acids and conjugates |
Biological properties |
|
Pathways (Pathway Details in HMDB) |
|
Reference | Country | Specimen | Marker function | Participants (Case) | Participants (Control) | |||||||||
Cancer type | Stage | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | Type | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | ||||
Miyamoto et al. 2015 | US | blood | diagnosis | NSCLC, SCLC, mesothelioma, secondary metastasis to lung | I, II, III, IV | 11 | 4, 7 | 67 (61-73) / 67 (47-76) | smoker, non-smoker | healthy | 11 | 5, 6 | 69 (61-83) / 54 (44-61) | unknown |
Miyamoto et al. 2015 | US | blood | diagnosis | adenocarcinoma | unknown (mostly late stage) | 18 | 10, 8 | 67 (50-85) / 62 (53-72) | former, current | healthy | 20 | 8, 12 | 64 (49-80) / 66 (58-82) | former, current |
Mazzone et al. 2016 | US | serum | – | adenocarcinoma, squamous cell carcinoma | I, II, III | 94 | 55.3%, 44.7% | 68.7 | – | at-risk controls | 190 | 50.5%, 49.5% | 66.2 | – |
Fahrmann et al. 2015 | US | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Ro?-Mazurczyk et al. 2017 | Poland | serum | diagnosis | adenocarcinoma, squamous cell carcinoma | I, II, III | 31 | 17, 14 | 52-72 | – | healthy | 92 | 52, 40 | 52-73 | – |
Fahrmann et al. 2015 | US | serum | diagnosis | adenocarcinoma | I, II, III, IV | 49 | 17, 32 | 65.9 ± 9.87 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Fahrmann et al. 2015 | US | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 52 | 17, 35 | 65.9 ± 9.66 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Fahrmann et al. 2015 | US | serum | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Chen et al. 2015a | China | serum | diagnosis | adenocarcinoma, squamous cell carcinoma, large cell carcinoma | I, II, III | 30 | 9, 21 | 61.58 ± 10.67 | – | healthy | 30 | 11, 19 | 60.35 ± 12.48 | – |
Chen et al. 2015a | China | serum | diagnosis | adenocarcinoma, squamous cell carcinoma, large cell carcinoma | I, II, III | 30 | 9, 21 | 61.58 ± 10.67 | – | before vs. after treatment (operation) | 30 | 9, 21 | 61.58 ± 10.67 | – |
Wen et al. 2013 | China | plasma | diagnosis | adenocarcinoma | I | 31 | 15, 16 | median: 63 (40-81) | smoker, non-smoker | healthy | 28 | 20, 8 | median: 37 (29-50) | smoker, non-smoker |
Li et al. 2014 | China | serum | diagnosis | NSCLC, SCLC | – | 23 | 12, 11 | 63.0 ± 9.8 / 59.4 ± 5.8 | – | healthy | 23 | 11, 12 | 51.0 ± 11.1 / 56.3 ± 14.3 | – |
Lam et al. 2014 | China | pleural effusion | diagnosis | NSCLC, SCLC, anaplastic carcinoma | – | 32 | 13, 19 | 72.8 ± 11.4 | smoker, non-smoker | pulmonary tuberculosis | 18 | 10, 8 | 59.7 ± 25.2 | smoker, non-smoker |
Chen et al. 2015b | China | serum | – | lung cancer | – | 30 | – | 61.58 ± 10.67 | – | healthy | 30 | – | 60.35 ± 12.48 | – |
Chen et al. 2015b | China | serum | – | lung cancer | – | 30 | – | 61.58 ± 10.67 | – | before vs. after treatment (operation) | 30 | – | 61.58 ± 10.67 | – |
Wikoff et al. 2015b | US | tissue | diagnosis | adenocarcinoma | I | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker | tumor vs. adjacent normal tissue | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker |
Callejon-Leblic et al. 2016 | Spain | bronchoalveolar lavage fluid | diagnosis | lung cancer | – | 24 | 16, 8 | 66 ± 11 | – | noncancerous lung diseases | 31 | 23, 8 | 56 ± 13 | – |
Moreno et al. 2018 | Spain | tissue | therapy, diagnosis | squamous cell carcinoma | I, II, III | 35 | 35, 0 | 68.71 ± 7.46 | – | tumor vs. adjacent normal tissue | 35 | 35, 0 | 68.71 ± 7.46 | – |
Moreno et al. 2018 | Spain | tissue | therapy, diagnosis | adenocarcinoma | I, II, III | 33 | 24, 9 | 62.11 ± 9.73 | – | tumor vs. adjacent normal tissue | 33 | 24, 9 | 62.11 ± 9.73 | – |
Callejon-Leblic et al. 2019 | Spain | bronchoalveolar lavage fluid | diagnosis | NSCLC, SCLC | – | 24 | 16, 8 | 65± 12 | former, current | noncancerous lung diseases | 30 | 25, 5 | 55 ± 15 | former, current, non-smoker |
Callej?n-Leblic et al. 2019 | Spain | blood | diagnosis | NSCLC, SCLC | II, III, IV | 30 | 25, 5 | 67 ± 12 | former, current, non-smoker | healthy | 30 | 14, 16 | 56 ± 14 | former, non-smoker |
Sun et al. 2019 | China | serum | diagnosis | lung cancer | I, II, III, IV | 31 | 21, 10 | 54.1 ± 9.9 | smoker, non-smoker | healthy | 29 | 15, 14 | 52.1 ± 14.6 | smoker, non-smoker |
Qi et al. 2021 | China | blood | diagnosis | adenocarcinoma, squamous cell carcinoma, small cell lung cancer, other types, unknown types | I, II, III, IV | 98 | 51, 47 | Median: 50 (32-69) | – | healthy | 75 | 36, 39 | Median: 50 (31-69) | – |
Zheng et al. 2021 | China | Serum | diagnosis | lung cancer | I, II, III, IV | 57 | 38, 19 | Median: 62 (52-69) | smoker, non-smoker | healthy | 59 | 48, 11 | Median: 60 (59-62) | smoker, non-smoker |
Kowalczyk et al. 2021 | Poland | Tissue | diagnosis | adenocarcinoma (ADC) | I, II, III | 33 | 23, 10 | 64.77 ± 8.44 | – | healthy control | 20 | 13, 7 | 61.5 ± 12.06 | – |
Reference | Chromatography | Ion source | Positive/Negative mode | Mass analyzer | Identification level |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Mazzone et al. 2016 | GC | EI | – | quadrupole | MS/MS |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Ro?-Mazurczyk et al. 2017 | GC | – | – | TOF | In-source fragmentation |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Chen et al. 2015a | GC | – | – | – | – |
Chen et al. 2015a | GC | – | – | – | – |
Wen et al. 2013 | LC | ESI | – | Q-TOF | MS/MS |
Li et al. 2014 | LC | – | both | Q-TOF | MS/MS |
Lam et al. 2014 | LC | ESI | both | TripleTOF | MS/MS |
Chen et al. 2015b | GC | EI | – | quadrupole | – |
Chen et al. 2015b | GC | EI | – | quadrupole | – |
Wikoff et al. 2015b | GC | EI | – | TOF | – |
Callejon-Leblic et al. 2016 | GC | EI | – | ion trap | – |
Moreno et al. 2018 | LC, GC | ESI, EI | both | LC: linear ion-trap, GC: single-quadrupole | LC: MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | both | LC: linear ion-trap, GC: single-quadrupole | LC: MS/MS |
Callejon-Leblic et al. 2019 | GC | EI | – | ion trap | – |
Callej?n-Leblic et al. 2019 | DI | ESI | negative | Q-TOF | MS/MS |
Sun et al. 2019 | GC | – | – | – | – |
Qi et al. 2021 | LC | ESI | both | Q-Orbitrap | MS/MS |
Zheng et al. 2021 | GC | EI | – | quadrupole | – |
Kowalczyk et al. 2021 | LC | ESI | both | Q-TOF | – |
Reference | Data processing software | Database search |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Mazzone et al. 2016 | Metabolon LIMS system | Metabolon LIMS system |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Ro?-Mazurczyk et al. 2017 | Leco ChromaTOF-GC | Replib, Mainlib and Fiehn libraries |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Chen et al. 2015a | GC/MSD ChemStation software (Agilent Technologies) | NIST |
Chen et al. 2015a | GC/MSD ChemStation software (Agilent Technologies) | NIST |
Wen et al. 2013 | MassHunter, Mass Profiler Professional software (Agilent) | NIST 08, HMDB, METLIN, LIPID MAPS |
Li et al. 2014 | MarkerLynx | METLIN, HMDB, KEGG |
Lam et al. 2014 | PeakView, LipidView (AB SCIEX), XCMS | HMDB |
Chen et al. 2015b | ChemStation | NIST |
Chen et al. 2015b | ChemStation | NIST |
Wikoff et al. 2015b | BinBase | NIST11, BinBase |
Callejon-Leblic et al. 2016 | XCMS | NIST Mass Spectral Library |
Moreno et al. 2018 | – | KEGG, HMDB |
Moreno et al. 2018 | – | KEGG, HMDB |
Callejon-Leblic et al. 2019 | XCMS | NIST Mass Spectral Library |
Callej?n-Leblic et al. 2019 | – | HMDB, Metlin |
Sun et al. 2019 | – | BinBase, KEGG |
Qi et al. 2021 | ProteoWizard, XCMS, Xcalibur, CAMERA | mzCloud, ChemSpider, LipidBlast and Fiehn HILIC |
Zheng et al. 2021 | MassHunter Workstation software, Mass Profiler Professional software | NIST14, HMDB, Golm Metabolome Database |
Kowalczyk et al. 2021 | Mass Hunter Qualitative Analysis Software, Mass Profiler Professional | METLIN, KEGG, LIPIDMAPS, and HMDB |
Reference | Difference method | Mean concentration (case) | Mean concentration (control) | Fold change (case/control) | P-value | FDR | VIP |
Miyamoto et al. 2015 | Analysis of Covariance | 12571.4545454545 | 11845.1818181818 | 1.06 | 0.32 | – | – |
Miyamoto et al. 2015 | Analysis of Covariance | 15337.9444444444 | 9391.95 | 1.63 | 0.13 | – | – |
Mazzone et al. 2016 | two- sample independent t test | 1.292579± 0.6680247 | 1.065943± 0.7456325 | 1.21 | 0.01 | 0.04 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 2557 ± 1453 | 2335 ± 1796 | 1.10 | 0.28 | 0.57 | – |
Ro?-Mazurczyk et al. 2017 | two-sample T test, U Mann-Whitney test, Benjamini-Hochberg approach | 3.8226 ± 2.6189 | 4.8695 ± 5.9457 | 0.79 | 0.79 | 0.85 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 3836 ± 2605 | 2283 ± 1541 | 1.68 | 0.02 | 0.21 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 3919 ± 2555 | 2543 ± 1869 | 1.54 | 0.06 | 0.40 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 4121 ± 2227 | 4224 ± 2850 | 0.98 | 0.65 | 0.89 | – |
Chen et al. 2015a | independent t-test | 605.66 ± 361.44 | 244.99 ± 131.32 | 2.47 | 1.00e-03 | – | – |
Chen et al. 2015a | independent t-test | 605.66 ± 361.44 | 346.58 ± 164.66 | 1.75 | 1.00e-03 | – | – |
Wen et al. 2013 | Mann–Whitney–Wilcoxon test, OPLS-DA | – | – | 15.67 | 2.45e-10 | – | 1.28 |
Li et al. 2014 | PCA, PLS-DA, OSC-PLS-DA, student’s t-test | – | – | – | 0.05 | – | 7.40 |
Lam et al. 2014 | t-test, OPLS-DA | – | – | – | 8.23e-08 | – | – |
Chen et al. 2015b | PCA, PLS-DA, independent t test | – | – | 2.46 | 1.00e-03 | – | 1.72 |
Chen et al. 2015b | PCA, PLS-DA, independent t test | – | – | 0.57 | 1.00e-03 | – | 1.29 |
Wikoff et al. 2015b | OPLS-DA | – | – | 1.10 | – | 0.66 | – |
Callejon-Leblic et al. 2016 | PLS-LDA, one-way ANOVA | – | – | 0.78 | 0.02 | – | 1.45 |
Moreno et al. 2018 | paired two-sample t-test, PLS-DA | – | – | 1.39 | 2.87e-05 | 5.75e-05 | – |
Moreno et al. 2018 | paired two-sample t-test, PLS-DA | – | – | 1.03 | 0.69 | 0.73 | – |
Callejon-Leblic et al. 2019 | PLS-LDA, one-way ANOVA | – | – | 0.78 | 0.02 | – | 1.45 |
Callej?n-Leblic et al. 2019 | PCA, PLS-DA, one-way ANOVA | – | – | 1.68 | 0.01 | – | 1.48 |
Sun et al. 2019 | Student t test, PLS-DA | – | – | 2.20 | 8.95e-06 | 1.51e-04 | 0.73 |
Qi et al. 2021 | PCA, OPLS-DA, Student’s t test | – | – | 0.86 | 0.02 | – | 1.82 |
Zheng et al. 2021 | Student’s t-test, Mann–Whitney U test, PCA, PLS-DA, and OPLS-DA | – | – | 0.91 | 1.53e-14 | 3.95e-14 | 1.07 |
Kowalczyk et al. 2021 | Mann–Whitney U-test and Benjamini–Hochberg false discovery rate, partial least squares discriminant analysis (PLS-DA) | – | – | – | 0.01 | – | – |
Reference | Classification method | Cutoff value | AUROC 95%CI | Sensitivity (%) | Specificity (%) | Accuracy (%) |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Mazzone et al. 2016 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Ro?-Mazurczyk et al. 2017 | ROC curve | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Chen et al. 2015a | ROC curve analysis | 402.22 | 0.749 (0.614-0.884) | 70 | 86.67 | – |
Chen et al. 2015a | ROC curve analysis | 489.02 | 0.694 (0.550–0.838) | 60 | 80 | – |
Wen et al. 2013 | ROC curve analysis | – | 0.98 | – | – | – |
Li et al. 2014 | ROC curve analysis | – | – | – | – | – |
Lam et al. 2014 | ROC curve analysis | – | 0.866–0.996 | 84.4 | 100 | – |
Chen et al. 2015b | – | – | – | – | – | – |
Chen et al. 2015b | – | – | – | – | – | – |
Wikoff et al. 2015b | – | – | – | – | – | – |
Callejon-Leblic et al. 2016 | ROC curve analysis | – | 0.54 | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Callejon-Leblic et al. 2019 | ROC curve analysis | – | 0.54 | – | – | – |
Callej?n-Leblic et al. 2019 | ROC curve | – | 0.64 | – | – | – |
Sun et al. 2019 | ROC curve analysis | – | – | – | – | – |
Qi et al. 2021 | – | – | – | – | – | – |
Zheng et al. 2021 | ROC analysis | – | 0.993 (Combination of cholesterol, oleic acid, 4-hydroxybutyric acid, myo-inositol, and 2-hydroxybutyric acid) | – | – | – |
Kowalczyk et al. 2021 | – | – | – | – | – | – |